
MATLAB® 7
3-D Visualization

How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

MATLAB® 3-D Visualization

© COPYRIGHT 1984–2008 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined
in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of
this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government’s
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History
March 2006 Online only New for MATLAB 7.2 (Release 2006a)
September 2006 Online only Revised for MATLAB 7.3 (Release 2006b)
March 2007 Online only Revised for MATLAB 7.4 (Release 2007a)
September 2007 Online only Revised for MATLAB 7.5 (Release 2007b)
March 2008 Online only Revised for MATLAB 7.6 (Release 2008a)

This publication was previously part of the Using MATLAB
Graphics User Guide.

Contents

Creating 3-D Graphs

1
A Typical 3-D Graph . 1-2

Line Plots of 3-D Data . 1-4
Basic 3-D Plotting: The plot3 function 1-4
Plotting Matrix Data . 1-5

Representing a Matrix as a Surface 1-7
Functions for Plotting Data Grids . 1-7
Mesh and Surface Plots . 1-8
Visualizing Functions of Two Variables 1-8
Surface Plots of Nonuniformly Sampled Data 1-10
Parametric Surfaces . 1-12
Hidden Line Removal . 1-14

Coloring Mesh and Surface Plots . 1-16
Coloring Techniques . 1-16
Types of Color Data . 1-17
Colormaps . 1-17
Indexed Color Surfaces — Direct and Scaled Color

Mapping . 1-19
Example — Mapping Surface Curvature to Color 1-21
Altering Colormaps . 1-23
Truecolor Surfaces . 1-24
Texture Mapping . 1-26

Defining the View

2
Viewing Overview . 2-3

Viewing 3-D Graphs and Scenes . 2-3
Positioning the Viewpoint . 2-3

v

Setting the Aspect Ratio . 2-4
Default Views . 2-4

Setting the Viewpoint with Azimuth and Elevation . . . 2-5
Azimuth and Elevation . 2-5

Defining Scenes with Camera Graphics 2-9

View Control with the Camera Toolbar 2-10
Camera Toolbar . 2-10
Camera Motion Controls . 2-13
Orbit Camera . 2-13
Orbit Scene Light . 2-15
Pan/Tilt Camera . 2-15
Move Camera Horizontally/Vertically 2-16
Move Camera Forward and Backward 2-17
Zoom Camera . 2-18
Camera Roll . 2-19

Camera Graphics Functions . 2-21

Example — Dollying the Camera . 2-22
Summary of Techniques . 2-22
Implementation . 2-22

Example — Moving the Camera Through a Scene 2-24
Summary of Techniques . 2-24
Graphing the Volume Data . 2-25
Setting Up the View . 2-25
Specifying the Light Source . 2-26
Selecting a Renderer . 2-26
Defining the Camera Path as a Stream Line 2-26
Implementing the Fly-Through . 2-27

Low-Level Camera Properties . 2-30
Camera Properties You Can Set . 2-30
Default Viewpoint Selection . 2-31
Moving In and Out on the Scene . 2-32
Making the Scene Larger or Smaller 2-33
Revolving Around the Scene . 2-34
Rotation Without Resizing of Graphics Objects 2-34

vi Contents

Rotation About the Viewing Axis . 2-34

Understanding View Projections . 2-37
The Two Types of Projections . 2-37
Projection Types and Camera Location 2-39

Understanding Axes Aspect Ratio 2-42
Stretch-to-Fill . 2-42
Specifying Axis Scaling . 2-42
Specifying Aspect Ratio . 2-43
Example — axis Command Options 2-44
Additional Commands for Setting Aspect Ratio 2-46

Manipulating Axes Aspect Ratio . 2-47
Axes Aspect Ratio Properties . 2-47
Default Aspect Ratio Selection . 2-48
Overriding Stretch-to-Fill . 2-51
Effects of Setting Aspect Ratio Properties 2-52
Example — Displaying Cross-Sections of Surfaces 2-55
Example — Displaying Real Objects 2-57

Lighting as a Visualization Tool

3
Lighting Overview . 3-2

Lighting Commands . 3-2
Light Objects . 3-2
Properties That Affect Lighting . 3-3
Examples of Lighting Control . 3-5

Selecting a Lighting Method . 3-8
Face and Edge Lighting Methods . 3-8

Reflectance Characteristics of Graphics Objects 3-10
Specular and Diffuse Reflection . 3-10
Ambient Light . 3-11
Specular Exponent . 3-12
Specular Color Reflectance . 3-13

vii

Back Face Lighting . 3-13
Positioning Lights in Data Space . 3-16

Transparency

4
Making Objects Transparent . 4-2

About Transparency . 4-2
Specifying Transparency . 4-3
Example — A Transparent Isosurface 4-5

Mapping Data to Transparency — Alpha Data 4-8
What Is Alpha Data? . 4-8
Size of the Alpha Data Array . 4-9
Mapping Alpha Data to the Alphamap 4-9
Example — Mapping Data to Color or Transparency 4-10

Selecting an Alphamap . 4-12
What Is an Alphamap? . 4-12
Example — Modifying the Alphamap 4-14

Creating 3-D Models with Patches

5
Introduction to Patch Objects . 5-2

What Are Patch Objects? . 5-2
Behavior of the patch Function . 5-3
Creating a Single Polygon . 5-4

Multifaceted Patches . 5-7
Example — Defining a Cube . 5-7

Modifying Data on Existing Patch Objects 5-11
Specifying Patch Data . 5-11
Handling Mixed Data Specification 5-11

viii Contents

Specifying Patch Coloring . 5-14
Patch Color Properties . 5-14
Patch Edge Coloring . 5-15
Coloring Edges with Shared Vertices 5-17

Interpreting Indexed and Truecolor Data 5-18
Introduction . 5-18
Indexed Color Data . 5-18
Truecolor Patches . 5-21
Interpolating in Indexed Color Versus Truecolor 5-22

Volume Visualization Techniques

6
Overview of Volume Visualization 6-3

Examples of Volume Data . 6-3
Selecting Visualization Techniques 6-4
Steps to Create a Volume Visualization 6-4
Volume Visualization Functions . 6-5

Techniques for Visualizing Scalar Volume Data 6-7
What Is Scalar Volume Data? . 6-7
Example — Ways to Display MRI Data 6-7

Exploring Volumes with Slice Planes 6-14
Example — Slicing Fluid Flow Data 6-14
Modifying the Color Mapping . 6-17

Connecting Equal Values with Isosurfaces 6-19
Example — Isosurfaces in Fluid Flow Data 6-19

Isocaps Add Context to Visualizations 6-21
What Are Isocaps? . 6-21
Other Isocap Applications . 6-22
Defining Isocaps . 6-22
Example — Adding Isocaps to an Isosurface 6-23

Visualizing Vector Volume Data . 6-26

ix

Lines, Particles, Ribbons, Streams, Tubes, and Cones 6-26
Using Scalar Techniques with Vector Data 6-27
Specifying Starting Points for Stream Plots 6-27
Accessing Subregions of Volume Data 6-30

Example — Stream Line Plots of Vector Data 6-32
Wind Mapping Data . 6-32
1. Determine the Range of the Coordinates 6-32
2. Add Slice Planes for Visual Context 6-32
3. Add Contour Lines to the Slice Planes 6-33
4. Define the Starting Points for the Stream Lines 6-33
5. Define the View . 6-33

Example — Displaying Curl with Stream Ribbons 6-35
What Stream Ribbons Can Show . 6-35
1. Select a Subset of Data to Plot . 6-35
2. Calculate Curl Angular Velocity and Wind Speed 6-35
3. Create the Stream Ribbons . 6-36
4. Define the View and Add Lighting 6-36

Example — Displaying Divergence with Stream
Tubes . 6-38
What Stream Tubes Can Show . 6-38
1. Load Data and Calculate Required Values 6-38
2. Draw the Slice Planes . 6-39
3. Add Contour Lines to Slice Planes 6-39
4. Create the Stream Tubes . 6-39
5. Define the View . 6-40

Example — Creating Stream Particle Animations 6-42
What Particle Animations Can Show 6-42
1. Specify the Starting Points of the Data Range to Plot . . 6-42
2. Create Stream Lines to Indicate the Particle Paths 6-42
3. Define the View . 6-43
4. Calculate the Stream Particle Vertices 6-43

Example — Vector Field Displayed with Cone Plots . . . 6-45
What Cone Plots Can Show . 6-45
1. Create an Isosurface . 6-45
2. Add Isocaps to the Isosurface . 6-46
3. Create First Set of Cones . 6-46
4. Create Second Set of Cones . 6-47

x Contents

5. Define the View . 6-47
6. Add Lighting . 6-47

Index

xi

xii Contents

1

Creating 3-D Graphs

A Typical 3-D Graph (p. 1-2) The steps to follow to create a typical
3-D graph

Line Plots of 3-D Data (p. 1-4) Line plots of data having x-, y-, and
z-coordinates

Representing a Matrix as a Surface
(p. 1-7)

Graphing matrix (2-D array) data on
a rectangular grid

Coloring Mesh and Surface Plots
(p. 1-16)

Techniques for coloring surface and
mesh plots, including colormaps,
truecolor, and texture mapping.

1 Creating 3-D Graphs

A Typical 3-D Graph
This table illustrates typical steps involved in producing 3-D scenes containing
either data graphs or models of 3-D objects. Example applications include
pseudocolor surfaces illustrating the values of functions over specific regions
and objects drawn with polygons and colored with light sources to produce
realism. Usually, you follow either step 4 or step 5.

Step Typical Code

1 Prepare your data. Z = peaks(20);

2 Select window and
position plot region
within window.

figure(1);subplot(2,1,2)

3 Call 3-D graphing
function.

h = surf(Z);

4 Set colormap and
shading algorithm.

colormap hot
shading interp
set(h,'EdgeColor','k')

5 Add lighting.
light('Position',[-2,2,20])
lighting phong
material([0.4,0.6,0.5,30])
set(h,'FaceColor',[0.7 0.7 0],...

'BackFaceLighting','lit')

1-2

A Typical 3-D Graph

Step Typical Code

6 Set viewpoint.
view([30,25])
set(gca,'CameraViewAngleMode','Manual')

7 Set axis limits and tick
marks.

axis([5 15 5 15 -8 8])
set(gca,'ZTickLabel','Negative||Positive')

8 Set aspect ratio. set(gca,'PlotBoxAspectRatio',[2.5 2.5 1])

9 Annotate the graph
with axis labels, legend,
and text.

xlabel('X Axis')
ylabel('Y Axis')
zlabel('Function Value')
title('Peaks')

10 Print graph. set(gcf,'PaperPositionMode','auto')
print -dps2

1-3

1 Creating 3-D Graphs

Line Plots of 3-D Data

In this section...

“Basic 3-D Plotting: The plot3 function” on page 1-4

“Plotting Matrix Data” on page 1-5

Basic 3-D Plotting: The plot3 function
The 3-D analog of the plot function is plot3. If x, y, and z are three vectors
of the same length,

plot3(x,y,z)

generates a line in 3-D through the points whose coordinates are the elements
of x, y, and z and then produces a 2-D projection of that line on the screen.
For example, these statements produce a helix.

t = 0:pi/50:10*pi;
plot3(sin(t),cos(t),t)
axis square; grid on

1-4

Line Plots of 3-D Data

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
0

10

20

30

40

Plotting Matrix Data
If the arguments to plot3 are matrices of the same size, lines obtained from
the columns of X, Y, and Z are plotted. For example,

[X,Y] = meshgrid([-2:0.1:2]);
Z = X.*exp(-X.^2-Y.^2);
plot3(X,Y,Z)
grid on

Notice how line colors cycle, based on the axes ColorOrder property.

1-5

1 Creating 3-D Graphs

−2
−1

0
1

2

−2

−1

0

1

2
−0.5

0

0.5

1-6

Representing a Matrix as a Surface

Representing a Matrix as a Surface

In this section...

“Functions for Plotting Data Grids” on page 1-7

“Mesh and Surface Plots” on page 1-8

“Visualizing Functions of Two Variables” on page 1-8

“Surface Plots of Nonuniformly Sampled Data” on page 1-10

“Parametric Surfaces” on page 1-12

“Hidden Line Removal” on page 1-14

Functions for Plotting Data Grids
MATLAB® graphics software defines a surface by the z-coordinates of points
above a rectangular grid in the x-y plane. The plot is formed by joining
adjacent points with straight lines. Surface plots are useful for visualizing
matrices that are too large to display in numerical form and for graphing
functions of two variables.

MATLAB can create different forms of surface plots. Mesh plots are
wire-frame surfaces that color only the lines connecting the defining points.
Surface plots display both the connecting lines and the faces of the surface in
color. This table lists the various forms.

Function Used to Create

mesh, surf Surface plot

meshc, surfc Surface plot with contour plot beneath it

meshz Surface plot with curtain plot (reference plane)

pcolor Flat surface plot (value is proportional only to color)

surfl Surface plot illuminated from specified direction

surface Low-level function (on which high-level functions are
based) for creating surface graphics objects

1-7

1 Creating 3-D Graphs

Mesh and Surface Plots
The mesh and surf commands create 3-D surface plots of matrix data. If Z is a
matrix for which the elements Z(i,j) define the height of a surface over an
underlying (i,j) grid, then

mesh(Z)

generates a colored, wire-frame view of the surface and displays it in a 3-D
view. Similarly,

surf(Z)

generates a colored, faceted view of the surface and displays it in a 3-D view.
Ordinarily, the facets are quadrilaterals, each of which is a constant color,
outlined with black mesh lines, but the shading command allows you to
eliminate the mesh lines (shading flat) or to select interpolated shading
across the facet (shading interp).

Surface object properties provide additional control over the visual appearance
of the surface. You can specify edge line styles, vertex markers, face coloring,
lighting characteristics, and so on.

Visualizing Functions of Two Variables
The first step in displaying a function of two variables, z = f(x,y), is to generate
X and Y matrices consisting of repeated rows and columns, respectively, over
the domain of the function. Then use these matrices to evaluate and graph
the function.

The meshgrid function transforms the domain specified by two vectors, x and
y, into matrices X and Y. You then use these matrices to evaluate functions
of two variables. The rows of X are copies of the vector x and the columns of
Y are copies of the vector y.

To illustrate the use of meshgrid, consider the sin(r)/r or sinc function. To
evaluate this function between -8 and 8 in both x and y, you need pass only
one vector argument to meshgrid, which is then used in both directions.

[X,Y] = meshgrid(-8:.5:8);
R = sqrt(X.^2 + Y.^2) + eps;

1-8

Representing a Matrix as a Surface

The matrix R contains the distance from the center of the matrix, which is
the origin. Adding eps prevents the divide by zero (in the next step) that
produces Inf values in the data.

Forming the sinc function and plotting Z with mesh results in the 3-D surface.

Z = sin(R)./R;
mesh(X,Y,Z)

−10
−5

0
5

10

−10

−5

0

5

10
−0.5

0

0.5

1

Emphasizing Surface Shape
MATLAB provides a number of techniques that can enhance the information
content of your graphs. For example, this graph of the sinc function uses the
same data as the previous graph, but employs lighting and view adjustment to
emphasize the shape of the graphed function (daspect, axis, view, camlight).

surf(X,Y,Z,'FaceColor','interp',...
'EdgeColor','none',...
'FaceLighting','phong')

1-9

1 Creating 3-D Graphs

daspect([5 5 1])
axis tight
view(-50,30)
camlight left

See the surf function for more information on surface plots.

Surface Plots of Nonuniformly Sampled Data
You can use meshgrid to create a grid of uniformly sampled data points at
which to evaluate and graph the sinc function. MATLAB then constructs
the surface plot by connecting neighboring matrix elements to form a mesh
of quadrilaterals.

To produce a surface plot from nonuniformly sampled data, first use griddata
to interpolate the values at uniformly spaced points, and then use mesh and
surf in the usual way.

Example — Displaying Nonuniform Data on a Surface
This example evaluates the sinc function at random points within a specific
range and then generates uniformly sampled data for display as a surface
plot. The process involves these tasks:

1-10

Representing a Matrix as a Surface

• Use linspace to generate evenly spaced values over the range of your
unevenly sampled data.

• Use meshgrid to generate the plotting grid with the output of linspace.

• Use griddata to interpolate the irregularly sampled data to the regularly
spaced grid returned by meshgrid.

• Use a plotting function to display the data.

1 First, generate unevenly sampled data within the range [-8, 8] and use
it to evaluate the function.

x = rand(100,1)*16 - 8;
y = rand(100,1)*16 - 8;
r = sqrt(x.^2 + y.^2) + eps;
z = sin(r)./r;

2 The linspace function provides a convenient way to create uniformly
spaced data with the desired number of elements. The following statements
produce vectors over the range of the random data with the same resolution
as that generated by the -8:.5:8 statement in the previous sinc example.

xlin = linspace(min(x),max(x),33);
ylin = linspace(min(y),max(y),33);

3 Now use these points to generate a uniformly spaced grid.

[X,Y] = meshgrid(xlin,ylin);

4 The key to this process is to use griddata to interpolate the values of
the function at the uniformly spaced points, based on the values of the
function at the original data points (which are random in this example).
This statement uses a triangle-based cubic interpolation to generate the
new data.

Z = griddata(x,y,z,X,Y,'cubic');

5 Plotting the interpolated and the nonuniform data produces

mesh(X,Y,Z) %interpolated
axis tight; hold on

1-11

1 Creating 3-D Graphs

plot3(x,y,z,'.','MarkerSize',15) %nonuniform

−5

0

5

−5

0

5

−0.2

0

0.2

0.4

0.6

0.8

Parametric Surfaces
The functions that draw surfaces can take two additional vector or matrix
arguments to describe surfaces with specific x and y data. If Z is an m-by-n
matrix, x is an n-vector, and y is an m-vector, then

mesh(x,y,Z,C)

describes a mesh surface with vertices having color C(i,j) and located at
the points

(x(j), y(i), Z(i,j))

1-12

Representing a Matrix as a Surface

where x corresponds to the columns of Z and y to its rows.

More generally, if X, Y, Z, and C are matrices of the same dimensions, then

mesh(X,Y,Z,C)

describes a mesh surface with vertices having color C(i,j) and located at
the points

(X(i,j), Y(i,j), Z(i,j))

This example uses spherical coordinates to draw a sphere and color it with the
pattern of pluses and minuses in a Hadamard matrix, an orthogonal matrix
used in signal processing coding theory. The vectors theta and phi are in the
range -π ≤ theta ≤ π and -π/2 ≤ phi ≤ π/2. Because theta is a row vector
and phi is a column vector, the multiplications that produce the matrices X,
Y, and Z are vector outer products.

k = 5;
n = 2^k-1;
theta = pi*(-n:2:n)/n;
phi = (pi/2)*(-n:2:n)'/n;
X = cos(phi)*cos(theta);
Y = cos(phi)*sin(theta);
Z = sin(phi)*ones(size(theta));
colormap([0 0 0;1 1 1])
C = hadamard(2^k);
surf(X,Y,Z,C)
axis square

1-13

1 Creating 3-D Graphs

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
−1

−0.5

0

0.5

1

Hidden Line Removal
By default, MATLAB removes lines that are hidden from view in mesh plots,
even though the faces of the plot are not colored. You can disable hidden
line removal and allow the faces of a mesh plot to be transparent with the
command

hidden off

This is the surface plot with hidden set to off.

1-14

Representing a Matrix as a Surface

−10
−5

0
5

10

−10

−5

0

5

10
−0.5

0

0.5

1

1-15

1 Creating 3-D Graphs

Coloring Mesh and Surface Plots

In this section...

“Coloring Techniques” on page 1-16

“Types of Color Data” on page 1-17

“Colormaps” on page 1-17

“Indexed Color Surfaces — Direct and Scaled Color Mapping” on page 1-19

“Example — Mapping Surface Curvature to Color” on page 1-21

“Altering Colormaps” on page 1-23

“Truecolor Surfaces” on page 1-24

“Texture Mapping” on page 1-26

Coloring Techniques
You can enhance the information content of surface plots by controlling
the way MATLAB® graphics apply color to these plots. MATLAB can map
particular data values to colors specified explicitly or can map the entire
range of data to a predefined range of colors called a colormap.

You can apply three different coloring techniques:

• Indexed Color – MATLAB colors the surface plot by assigning each data
point an index into the figure’s colormap. The way MATLAB applies these
colors depends on the type of shading used (faceted, flat, or interpolated).

• Truecolor — MATLAB colors the surface plot using the explicitly specified
colors (i.e., the RGB triplets). The way MATLAB applies these colors
depends on the type of shading used (faceted, flat, or interpolated). To be
rendered accurately, truecolor requires computers with 24-bit displays;
however, MATLAB simulates truecolor on indexed systems. See the
shading command for information on the types of shading.

• Texture Mapping – Texture mapping displays a 2-D image mapped onto a
3-D surface.

1-16

Coloring Mesh and Surface Plots

Types of Color Data
The type of color data you specify (i.e., single values or RGB triplets)
determines how MATLAB interprets it. When you create a surface plot,
you can

• Provide no explicit color data, in which case MATLAB generates colormap
indices from the z-data.

• Specify an array of color data that is equal in size to the z-data and is used
for indexed colors.

• Specify an m-by-n-by-3 array of color data that defines an RGB triplet for
each element in the m-by-n z-data array and is used for truecolor.

Colormaps
Each MATLAB figure window has a colormap associated with it. A colormap
is simply a three-column matrix whose length is equal to the number of colors
it defines. Each row of the matrix defines a particular color by specifying
three values in the range 0 to 1. These values define the RGB components
(i.e., the intensities of the red, green, and blue video components).

The colormap function, with no arguments, returns the current figure’s
colormap.

For example, the MATLAB default colormap contains 64 colors and the 57th
color is red.

cm = colormap;
cm(57,:)
ans =

1 0 0

RGB Color Components
This table lists some representative RGB color definitions.

Red Green Blue Color

0 0 0 Black

1-17

1 Creating 3-D Graphs

Red Green Blue Color

1 1 1 White

1 0 0 Red

0 1 0 Green

0 0 1 Blue

1 1 0 Yellow

1 0 1 Magenta

0 1 1 Cyan

0.5 0.5 0.5 Gray

0.5 0 0 Dark red

1 0.62 0.40 Copper

0.49 1 0.83 Aquamarine

You can create colormaps with MATLAB array operations or you can use any
of several functions that generate useful maps, including hsv, hot, cool,
summer, and gray. Each function has an optional parameter that specifies the
number of rows in the resulting map.

For example,

hot(m)

creates an m-by-3 matrix whose rows specify the RGB intensities of a map
that varies from black, through shades of red, orange, and yellow, to white.

If you do not specify the colormap length, MATLAB creates a colormap the
same length as the current colormap. The default colormap is jet(64).

If you use long colormaps (> 64 colors) in each of several figure windows, it
might become necessary for the operating system to swap in different color
lookup tables as the active focus is moved among the windows.

1-18

Coloring Mesh and Surface Plots

Displaying Colormaps
The colorbar function displays the current colormap, either vertically or
horizontally, in the figure window along with your graph. For example, the
statements

[x,y] = meshgrid([-2:.2:2]);
Z = x.*exp(-x.^2-y.^2);
surf(x,y,Z,gradient(Z))
colorbar

produce a surface plot and a vertical strip of color corresponding to the
colormap. Note how the colorbar indicates the mapping of data value to color
with the axis labels.

−2

−1

0

1

2

−2

−1

0

1

2
−0.5

0

0.5

−0.05

0

0.05

0.1

0.15

Indexed Color Surfaces — Direct and Scaled Color
Mapping
MATLAB can use two different methods to map indexed color data to the
colormap — direct and scaled.

1-19

1 Creating 3-D Graphs

Direct Mapping
Direct mapping uses the color data directly as indices into the colormap.
For example, a value of 1 points to the first color in the colormap, a value
of 2 points to the second color, and so on. If the color data is noninteger,
MATLAB rounds it toward zero. Values greater than the number of colors in
the colormap are set equal to the last color in the colormap (i.e., the number
length(colormap)). Values less than 1 are set to 1.

Scaled Mapping
Scaled mapping uses a two-element vector [cmin cmax] (specified with the
caxis command) to control the mapping of color data to the figure colormap.
cmin specifies the data value to map to the first color in the colormap and
cmax specifies the data value to map to the last color in the colormap. Data
values in between are linearly transformed from the second to the next-to-last
color, using the expression

colormap_index = fix((color_data-cmin)/(cmax-cmin)*cm_length)+1

cm_length is the length of the colormap.

By default, MATLAB sets cmin and cmax to span the range of the color data
of all graphics objects within the axes. However, you can set these limits to
any range of values. This enables you to display multiple axes within a single
figure window and use different portions of the figure’s colormap for each
one. See Calculating Color Limits in Axes Properties of the Using MATLAB
Graphics documentation for an example that uses color limits.

By default, MATLAB uses scaled mapping. To use direct mapping, you must
turn off scaling when you create the plot. For example,

surf(Z,C,'CDataMapping','direct')

See surface for more information on specifying color data.

Specifying Indexed Colors
When creating a surface plot with a single matrix argument, surf(Z) for
example, the argument Z specifies both the height and the color of the surface.
MATLAB transforms Z to obtain indices into the current colormap.

1-20

Coloring Mesh and Surface Plots

With two matrix arguments, the statement

surf(Z,C)

independently specifies the color using the second argument.

Example — Mapping Surface Curvature to Color
The Laplacian of a surface plot is related to its curvature; it is positive for
functions shaped like i^2 + j^2 and negative for functions shaped like -(i^2
+ j^2). The function del2 computes the discrete Laplacian of any matrix.
For example, use del2 to determine the color for the data returned by peaks.

P = peaks(40);
C = del2(P);
surf(P,C)
colormap hot

Creating a color array by applying the Laplacian to the data is useful because
it causes regions with similar curvature to be drawn in the same color.

1-21

1 Creating 3-D Graphs

Compare this surface coloring with that produced by the statements

surf(P)
colormap hot

which use the same colormap, but map regions with similar z value (height
above the x-y plane) to the same color.

1-22

Coloring Mesh and Surface Plots

Altering Colormaps
Because colormaps are matrices, you can manipulate them like other arrays.
The brighten function takes advantage of this fact to increase or decrease the
intensity of the colors. Plotting the values of the R, G, and B components of a
colormap using rgbplot illustrates the effects of brighten.

1-23

1 Creating 3-D Graphs

NTSC Color Encoding
The brightness component of television signals uses the NTSC color encoding
scheme.

b = .30*red + .59*green + .11*blue
= sum(diag([.30 .59 .11])*map')';

Using the nonlinear greyscale map,

colormap([b b b])

effectively converts a color image to its NTSC black-and-white equivalent.

Truecolor Surfaces
Computer systems with 24-bit displays are capable of displaying over 16
million (224) colors, as opposed to the 256 colors available on 8-bit displays.
You can take advantage of this capability by defining color data directly
as RGB values and eliminating the step of mapping numerical values to
locations in a colormap.

Specify truecolor using an m-by-n-by-3 array, where the size of Z is m-by-n.

1-24

Coloring Mesh and Surface Plots

For example, the statements

Z = peaks(25);
C(:,:,1) = rand(25);
C(:,:,2) = rand(25);
C(:,:,3) = rand(25);
surf(Z,C)

create a plot of the peaks matrix with random coloring.

You can set surface properties as with indexed color.

surf(Z,C,'FaceColor','interp','FaceLighting','phong')
camlight right

1-25

1 Creating 3-D Graphs

Rendering Methods for Truecolor
MATLAB always uses either OpenGL® or the Z-buffer rendering method
when displaying truecolor. If the figure RendererMode property is set to
auto, MATLAB automatically switches the value of the Renderer property
to zbuffer whenever you specify truecolor data.

If you explicitly set Renderer to painters (this sets RendererMode to manual)
and attempt to define an image, patch, or surface object using truecolor,
MATLAB returns a warning and does not render the object.

See the image, patch, and surface functions for information on defining
truecolor for these objects.

Texture Mapping
Texture mapping is a technique for mapping a 2-D image onto a 3-D surface
by transforming color data so that it conforms to the surface plot. It allows
you to apply a "texture," such as bumps or wood grain, to a surface without
performing the geometric modeling necessary to create a surface with these
features. The color data can also be any image, such as a scanned photograph.

Texture mapping allows the dimensions of the color data array to be different
from the data defining the surface plot. You can apply an image of arbitrary

1-26

file:///B:/matlab/doc/src/toolbox/matlab/ref/figure_props.html%23RendererMode
file:///B:/matlab/doc/src/toolbox/matlab/ref/figure_props.html%23Renderer

Coloring Mesh and Surface Plots

size to any surface. MATLAB interpolates texture color data so that it is
mapped to the entire surface.

Example — Texture Mapping a Surface
This example creates a spherical surface using the sphere function and
texture maps it with an image of the earth taken from space. Because the
earth image is a view of earth from one side, this example maps the image to
only one side of the sphere, padding the image data with 1s In this case, the
image data is a 257-by-250 matrix, so it is padded equally on each side with
two 257-by-125 matrices of 1s by concatenating the three matrices.

To use texture mapping, set the FaceColor to texturemap and assign the
image to the surface’s CData.

load earth % Load image data, X, and colormap, map
sphere; h = findobj('Type','surface');
hemisphere = [ones(257,125),...

X,...
ones(257,125)];

set(h,'CData',flipud(hemisphere),'FaceColor','texturemap')
colormap(map)
axis equal
view([90 0])
set(gca,'CameraViewAngleMode','manual')
view([65 30])

1-27

file:///B:/matlab/doc/src/toolbox/matlab/ref/surface_props.html%23FaceColor

1 Creating 3-D Graphs

1-28

2

Defining the View

Viewing Overview (p. 2-3) Overview of topics covered in this
chapter

Setting the Viewpoint with Azimuth
and Elevation (p. 2-5)

Using the simple azimuth and
elevation view model to define the
viewpoint, including definition and
examples

Defining Scenes with Camera
Graphics (p. 2-9)

Using the camera view model to
control 3-D scenes (illustration
defines terms)

View Control with the Camera
Toolbar (p. 2-10)

Camera tools for manipulating 3–D
scenes

Camera Graphics Functions (p. 2-21) Functions that control the camera
view model

Example — Dollying the Camera
(p. 2-22)

Example showing how to reposition
a scene when the user clicks over an
image

Example — Moving the Camera
Through a Scene (p. 2-24)

Example showing how to move a
camera through a scene along a path
traced by a stream line and showing
how to move a light source with the
camera

Low-Level Camera Properties
(p. 2-30)

Description of the graphic object
properties that control the camera

2 Defining the View

Understanding View Projections
(p. 2-37)

Orthographic and perspective project
types compared and illustrated and
the interaction between camera
properties and projection type

Understanding Axes Aspect Ratio
(p. 2-42)

How the axes aspect ratio for graphs
are determined and how you can
specify aspect ratio

Manipulating Axes Aspect Ratio
(p. 2-47)

Axes properties that control the
aspect ratio and how to set them to
achieve particular results

2-2

Viewing Overview

Viewing Overview

In this section...

“Viewing 3-D Graphs and Scenes” on page 2-3

“Positioning the Viewpoint” on page 2-3

“Setting the Aspect Ratio” on page 2-4

“Default Views” on page 2-4

Viewing 3-D Graphs and Scenes
The view is the particular orientation you select to display your graph or
graphical scene. The term viewing refers to the process of displaying a
graphical scene from various directions, zooming in or out, changing the
perspective and aspect ratio, flying by, and so on.

This section describes how to define the various viewing parameters to obtain
the view you want. Generally, viewing is applied to 3-D graphs or models,
although you might want to adjust the aspect ratio of 2-D views to achieve
specific proportions or make a graph fit in a particular shape.

MATLAB® viewing is composed of two basic areas:

• Positioning the viewpoint to orient the scene

• Setting the aspect ratio and relative axis scaling to control the shape of
the objects being displayed

Positioning the Viewpoint

• Setting the Viewpoint – Discusses how to specify the point from which
you view a graph in terms of azimuth and elevation. This is conceptually
simple, but does have limitations.

• Defining Scenes with Camera Graphics, View Control with the Camera
Toolbar, and Camera Graphics Functions — How to compose complex
scenes using the MATLAB camera viewing model.

• Dollying the Camera and Moving the Camera Through a Scene –
Programming techniques for moving the view around and through scenes.

2-3

2 Defining the View

• Low-Level Camera Properties — The graphics properties that control the
camera and illustrates the effects they cause.

Setting the Aspect Ratio

• View Projection Types – Describes orthographic and perspective projection
types and illustrates their use.

• Understanding Axes Aspect Ratio and Axes Aspect Ratio Properties — How
MATLAB sets the aspect ratio of the axes and how you can select the most
appropriate setting for your graphs.

Default Views
MATLAB automatically sets the view when you create a graph. The actual
view that MATLAB selects depends on whether you are creating a 2- or 3-D
graph. See “Default Viewpoint Selection” on page 2-31 and “Default Aspect
Ratio Selection” on page 2-48 for a description of how MATLAB defines the
standard view.

2-4

Setting the Viewpoint with Azimuth and Elevation

Setting the Viewpoint with Azimuth and Elevation

Azimuth and Elevation
You can control the orientation of the graphics displayed in an axes using
MATLAB® graphics functions. You can specify the viewpoint, view target,
orientation, and extent of the view displayed in a figure window. These
viewing characteristics are controlled by a set of graphics properties. You can
specify values for these properties directly or you can use the view command
and rely on MATLAB automatic property selection to define a reasonable view.

The view command specifies the viewpoint by defining azimuth and elevation
with respect to the axis origin. Azimuth is a polar angle in the x-y plane,
with positive angles indicating counterclockwise rotation of the viewpoint.
Elevation is the angle above (positive angle) or below (negative angle) the
x-y plane.

This diagram illustrates the coordinate system. The arrows indicate positive
directions.

Default 2-D and 3-D Views
MATLAB automatically selects a viewpoint that is determined by whether
the plot is 2-D or 3-D:

2-5

2 Defining the View

• For 2-D plots, the default is azimuth = 0° and elevation = 90°.

• For 3-D plots, the default is azimuth = -37.5° and elevation = 30°.

Examples of Views Specified with Azimuth and Elevation
For example, these statements create a 3-D surface plot and display it in
the default 3-D view.

[X,Y] = meshgrid([-2:.25:2]);
Z = X.*exp(-X.^2 -Y.^2);
surf(X,Y,Z)

−2
−1

0
1

2

−2
−1

0
1

2
−0.5

0

0.5

x−axis

Azimuth = −37.5° Elevation = 30°

y−axis

z−
ax

is

The statement

view([180 0])

sets the viewpoint so you are looking in the negative y-direction with your eye
at the z = 0 elevation.

2-6

Setting the Viewpoint with Azimuth and Elevation

−2−1012
−0.5

0

0.5

x−axis

Azimuth = 180° Elevation = 0°

z−
ax

is

You can move the viewpoint to a location below the axis origin using a
negative elevation.

view([-37.5 -30])

−2
−1

0
1

2

−2
−1

0
1

2

−0.5

0

0.5

y−axis

Azimuth = −37.5° Elevation = −30°

x−axis

z−
ax

is

2-7

2 Defining the View

Limitations of Azimuth and Elevation
Specifying the viewpoint in terms of azimuth and elevation is conceptually
simple, but it has limitations. It does not allow you to specify the actual
position of the viewpoint, just its direction, and the z-axis is always pointing
up. It does not allow you to zoom in and out on the scene or perform arbitrary
rotations and translations.

MATLAB camera graphics provides greater control than the simple
adjustments allowed with azimuth and elevation. The following sections
discuss how to use camera properties to control the view.

2-8

Defining Scenes with Camera Graphics

Defining Scenes with Camera Graphics
When you look at the graphics objects displayed in an axes, you are viewing a
scene from a particular location in space that has a particular orientation with
regard to the scene. MATLAB® Graphics provides functionality, analogous to
that of a camera with a zoom lens, that enables you to control the view of the
scene created by MATLAB.

This picture illustrates how the camera is defined in terms of properties of
the axes.

2-9

2 Defining the View

View Control with the Camera Toolbar

In this section...

“Camera Toolbar” on page 2-10

“Camera Motion Controls” on page 2-13

“Orbit Camera” on page 2-13

“Orbit Scene Light” on page 2-15

“Pan/Tilt Camera” on page 2-15

“Move Camera Horizontally/Vertically” on page 2-16

“Move Camera Forward and Backward” on page 2-17

“Zoom Camera” on page 2-18

“Camera Roll” on page 2-19

Camera Toolbar
The Camera toolbar enables you to perform a number of viewing operations
interactively. To use the Camera toolbar,

• Display the toolbar by selecting Camera Toolbar from the figure window’s
View menu.

• Select the type of camera motion control you want to use.

• Position the cursor over the figure window and click, hold down the right
mouse button, then move the cursor in the desired direction.

The display updates immediately as you move the mouse.

The toolbar contains the following parts:

2-10

View Control with the Camera Toolbar

• Camera Motion Controls — These tools select which camera motion
function to enable. You can also access the camera motion controls from
the Tools menu.

• Principal Axis Selector — Some camera controls operate with respect to a
particular axis. These selectors enable you to select the principal axis or
to select nonaxis constrained motion. The selectors are grayed out when
not applicable to the currently selected function. You can also access the
principal axis selector from the Tools menu.

• Scene Light — The scene light button toggles a light source on or off in the
scene (one light per axes).

• Projection Type — You can select orthographic or perspective projection
types.

• Reset and Stop — Reset returns the scene to the standard 3-D view. Stop
causes the camera to stop moving (this can be useful if you apply too much
cursor movement). You can also access an expanded set of reset functions
from the Tools menu.

Principal Axes
The principal axis of a scene defines the direction that is oriented upward on
the screen. For example, a MATLAB® surface plot aligns the up direction
along the positive z-axis.

Principal axes constrain camera-tool motion along axes that are (on the
screen) parallel and perpendicular to the principal axis that you select.
Specifying a principal axis is useful if your data is defined with respect to
a specific axis. Z is the default principal axis, because this matches the
MATLAB default 3-D view.

Two of the camera tools (Orbit and Pan/Tilt) allow you to select a principal
axis as well as axis-free motion. On the screen, the axes of rotation are
determined by a vertical and a horizontal line, both of which pass through
the point defined by the CameraTarget property and are parallel and
perpendicular to the principal axis.

For example, when the principal axis is z, movement occurs about

2-11

file:///B:/matlab/doc/src/toolbox/matlab/ref/axes_props.html%23CameraTarget

2 Defining the View

• A vertical line that passes through the camera target and is parallel to
the z-axis

• A horizontal line that passes through the camera target and is
perpendicular to the z-axis

This means the scene (or camera, as the case may be) moves in an arc whose
center is at the camera target. The following picture illustrates the rotation
axes for a z principal axis.

The axes of rotation always pass through the camera target.

Optimizing for 3-D Camera Motion
When you create a plot, MATLAB displays it with an aspect ratio that fits
the figure window. This behavior might not create an optimum situation for
the manipulation of 3-D graphics, as it can lead to distortion as you move the
camera around the scene. To avoid possible distortion, it is best to switch to a
3-D visualization mode (enabled from the command line with the command

2-12

View Control with the Camera Toolbar

axis vis3d). When using the Camera toolbar, MATLAB automatically
switches to the 3-D visualization mode, but warns you first with the following
dialog box.

This dialog box appears only once per MATLAB session.

For more information about the underlying effects of related camera
properties, see “Understanding Axes Aspect Ratio” on page 2-42. The next
section, “Camera Motion Controls” on page 2-13, discusses how to use each
tool.

Camera Motion Controls
This section discusses the individual camera motion functions selectable from
the toolbar.

Note When interpreting the following diagrams, keep in mind that the
camera always points towards the camera target. See “Defining Scenes with
Camera Graphics” on page 2-9 for an illustration of the graphics properties
involved in camera motion.

Orbit Camera

2-13

2 Defining the View

Orbit Camera rotates the camera about the z-axis (by default). You can select
x-, y-, z-, or free-axis rotation using the Principal Axis Selectors. When using
no principal axis, you can rotate about an arbitrary axis.

Graphics Properties
Orbit Camera changes the CameraPosition property while keeping the
CameraTarget fixed.

2-14

file:///B:/matlab/doc/src/toolbox/matlab/ref/axes_props.html%23CameraPosition

View Control with the Camera Toolbar

Orbit Scene Light

The scene light is a light source that is placed with respect to the camera
position. By default, the scene light is positioned to the right of the camera
(i.e., camlight right). Orbit Scene Light changes the light’s offset from the
camera position. There is only one scene light; however, you can add other
lights using the light command.

Toggle the scene light on and off by clicking the yellow light bulb icon.

Graphics Properties
Orbit Scene Light moves the scene light by changing the light’s Position
property.

Pan/Tilt Camera

Pan/Tilt Camera moves the point in the scene that the camera points to while
keeping the camera fixed. The movement occurs in an arc about the z-axis
by default. You can select x-, y-, z-, or free-axis rotation using the Principal
Axes Selectors.

Graphics Properties
Pan/Tilt Camera moves the point in the scene that the camera is pointing to
by changing the CameraTarget property.

2-15

file:///B:/matlab/doc/src/toolbox/matlab/ref/light_props.html%23Position
file:///B:/matlab/doc/src/toolbox/matlab/ref/axes_props.html%23CameraTarget

2 Defining the View

Move Camera Horizontally/Vertically

Moving the cursor horizontally or vertically (or any combination of the two)
moves the scene in the same direction.

Graphics Properties
The horizontal and vertical movement is achieved by moving the
CameraPosition and the CameraTarget in unison along parallel lines.

2-16

file:///B:/matlab/doc/src/toolbox/matlab/ref/axes_props.html%23CameraPosition
file:///B:/matlab/doc/src/toolbox/matlab/ref/axes_props.html%23CameraTarget

View Control with the Camera Toolbar

Move Camera Forward and Backward

Moving the cursor up or to the right moves the camera toward the scene.
Moving the cursor down or to the left moves the camera away from the scene.
It is possible to move the camera through objects in the scene and to the
other side of the camera target.

Graphics Properties
This function moves the CameraPosition along the line connecting the
camera position and the camera target.

2-17

file:///B:/matlab/doc/src/toolbox/matlab/ref/axes_props.html%23CameraPosition

2 Defining the View

Zoom Camera

Zoom Camera makes the scene larger as you move the cursor up or to the
right and smaller as you move the cursor down or to the left. Zooming does
not move the camera and therefore cannot move the viewpoint through
objects in the scene.

Graphics Properties
Zoom is implemented by changing the CameraViewAngle. The larger the
angle, the smaller the scene appears, and vice versa.

2-18

file:///B:/matlab/doc/src/toolbox/matlab/ref/axes_props.html%23CameraViewAngle

View Control with the Camera Toolbar

Camera Roll

Camera Roll rotates the camera about the viewing axis, thereby rotating
the view on the screen.

Graphics Properties
Camera Roll changes the CameraUpVector.

2-19

file:///B:/matlab/doc/src/toolbox/matlab/ref/axes_props.html%23CameraUpVector

2 Defining the View

2-20

Camera Graphics Functions

Camera Graphics Functions
The following table lists MATLAB® functions that enable you to perform a
number of useful camera maneuvers. The individual command descriptions
provide information on using each one.

Function Purpose

camdolly Move camera position and target

camlookat View specific objects

camorbit Orbit the camera about the camera target

campan Rotate the camera target about the camera
position

campos Set or get the camera position

camproj Set or get the projection type (orthographic or
perspective)

camroll Rotate the camera about the viewing axis

camtarget Set or get the camera target location

camup Set or get the value of the camera up vector

camva Set or get the value of the camera view angle

camzoom Zoom the camera in or out on the scene

2-21

2 Defining the View

Example — Dollying the Camera

In this section...

“Summary of Techniques” on page 2-22

“Implementation” on page 2-22

Summary of Techniques
In the camera metaphor, a dolly is a stage that enables movement of the
camera from side to side with respect to the scene. The camdolly command
implements similar behavior by moving both the position of the camera
and the position of the camera target in unison (or just the camera position
if you so desire).

This example illustrates how to use camdolly to explore different regions of
an image. It shows how to use the following functions:

• ginput to obtain the coordinates of locations on the image

• The camdolly data coordinates option to move the camera and target to
the new position based on coordinates obtained from ginput

• camva to zoom in and to fix the camera view angle, which is otherwise
under automatic control

Implementation
First load the Cape Cod image and zoom in by setting the camera view angle
(using camva).

load cape
image(X)
colormap(map)
axis image
camva(camva/2.5)

Then use ginput to select the x- and y-coordinates of the camera target and
camera position.

while 1

2-22

Example — Dollying the Camera

[x,y] = ginput(1);
if ~strcmp(get(gcf,'SelectionType'),'normal')

break
end
ct = camtarget;
dx = x - ct(1);
dy = y - ct(2);
camdolly(dx,dy,ct(3),'movetarget','data')
drawnow

end

2-23

2 Defining the View

Example — Moving the Camera Through a Scene

In this section...

“Summary of Techniques” on page 2-24

“Graphing the Volume Data” on page 2-25

“Setting Up the View” on page 2-25

“Specifying the Light Source” on page 2-26

“Selecting a Renderer” on page 2-26

“Defining the Camera Path as a Stream Line” on page 2-26

“Implementing the Fly-Through” on page 2-27

Summary of Techniques
A fly-through is an effect created by moving the camera through
three-dimensional space, giving the impression that you are flying along with
the camera as if in an aircraft. You can fly through regions of a scene that
might be otherwise obscured by objects in the scene or you can fly by a scene
by keeping the camera focused on a particular point.

To accomplish these effects you move the camera along a particular path, the
x-axis for example, in a series of steps. To produce a fly-through, move both
the camera position and the camera target at the same time.

The following example makes use of the fly-though effect to view the interior
of an isosurface drawn within a volume defined by a vector field of wind
velocities. This data represents air currents over North America.

This example employs a number of visualization techniques. It uses

• Isosurfaces and cone plots to illustrate the flow through the volume

• Lighting to illuminate the isosurface and cones in the volume

• Stream lines to define a path for the camera through the volume

• Coordinated motion of the camera position, camera target, and light

2-24

Example — Moving the Camera Through a Scene

See coneplot for a fixed visualization of the same data.

Graphing the Volume Data
The first step is to draw the isosurface and plot the air flow using cone plots.

See isosurface, isonormals, reducepatch, and coneplot for information on
using these commands.

Setting the data aspect ratio (daspect) to [1,1,1] before drawing the cone
plot enables MATLAB® software to calculate the size of the cones correctly
for the final view.

load wind
wind_speed = sqrt(u.^2 + v.^2 + w.^2);

hpatch = patch(isosurface(x,y,z,wind_speed,35));
isonormals(x,y,z,wind_speed,hpatch)
set(hpatch,'FaceColor','red','EdgeColor','none');

[f vt] = reducepatch(isosurface(x,y,z,wind_speed,45),0.05);
daspect([1,1,1]);
hcone = coneplot(x,y,z,u,v,w,vt(:,1),vt(:,2),vt(:,3),2);
set(hcone,'FaceColor','blue','EdgeColor','none');

Setting Up the View
You need to define viewing parameters to ensure the scene is displayed
correctly:

• Selecting a perspective projection provides the perception of depth as the
camera passes through the interior of the isosurface (camproj).

• Setting the camera view angle to a fixed value prevents MATLAB from
automatically adjusting the angle to encompass the entire scene as well as
zooming in the desired amount (camva).

camproj perspective
camva(25)

2-25

2 Defining the View

Specifying the Light Source
Positioning the light source at the camera location and modifying the
reflectance characteristics of the isosurface and cones enhances the realism
of the scene:

• Creating a light source at the camera position provides a "headlight" that
moves along with the camera through the isosurface interior (camlight).

• Setting the reflection properties of the isosurface gives the appearance of a
dark interior (AmbientStrength set to 0.1) with highly reflective material
(SpecularStrength and DiffuseStrength set to 1).

• Setting the SpecularStrength of the cones to 1 makes them highly
reflective.

hlight = camlight('headlight');
set(hpatch,'AmbientStrength',.1,...

'SpecularStrength',1,...
'DiffuseStrength',1);

set(hcone,'SpecularStrength',1);
set(gcf,'Color','k')

Selecting a Renderer
Because this example uses lighting, MATLAB must use either zbuffer or, if
available, OpenGL renderer settings. The OpenGL renderer is likely to be much
faster displaying the animation; however, you need to use gouraud lighting
with OpenGL®, which is not as smooth as Phong lighting, which you can use
with the zbuffer renderer. The two choices are

lighting gouraud
set(gcf,'Renderer','OpenGL')

or for zbuffer

lighting phong
set(gcf,'Renderer','zbuffer')

Defining the Camera Path as a Stream Line
Stream lines indicate the direction of flow in the vector field. This example
uses the x-, y-, and z-coordinate data of a single stream line to map a path

2-26

file:///B:/matlab/doc/src/toolbox/matlab/ref/patch_props.html%23AmbientStrength
file:///B:/matlab/doc/src/toolbox/matlab/ref/patch_props.html%23SpecularStrength
file:///B:/matlab/doc/src/toolbox/matlab/ref/patch_props.html%23DiffuseStrength

Example — Moving the Camera Through a Scene

through the volume. The camera is then moved along this path. The tasks
include

• Create a stream line starting at the point x = 80, y = 30, z = 11.

• Get the x-, y-, and z-coordinate data of the stream line.

• Delete the stream line (note that you could also use stream3 to calculate
the stream line data without actually drawing the stream line).

hsline = streamline(x,y,z,u,v,w,80,30,11);
xd = get(hsline,'XData');
yd = get(hsline,'YData');
zd = get(hsline,'ZData');
delete(hsline)

Implementing the Fly-Through
To create a fly-through, move the camera position and camera target along the
same path. In this example, the camera target is placed five elements further
along the x-axis than the camera. A small value is added to the camera target
x position to prevent the position of the camera and target from becoming the
same point if the condition xd(n) = xd(n+5) should occur:

• Update the camera position and camera target so that they both move
along the coordinates of the stream line.

• Move the light along with the camera.

• Call drawnow to display the results of each move.

for i=1:length(xd)-50
campos([xd(i),yd(i),zd(i)])
camtarget([xd(i+5)+min(xd)/100,yd(i),zd(i)])
camlight(hlight,'headlight')
drawnow

end

These snapshots illustrate the view at values of i equal to 10, 110, and 185.

2-27

2 Defining the View

2-28

Example — Moving the Camera Through a Scene

2-29

2 Defining the View

Low-Level Camera Properties

In this section...

“Camera Properties You Can Set” on page 2-30

“Default Viewpoint Selection” on page 2-31

“Moving In and Out on the Scene” on page 2-32

“Making the Scene Larger or Smaller” on page 2-33

“Revolving Around the Scene” on page 2-34

“Rotation Without Resizing of Graphics Objects” on page 2-34

“Rotation About the Viewing Axis” on page 2-34

Camera Properties You Can Set
Camera graphics is based on a group of axes properties that control the
position and orientation of the camera. In general, the camera commands
make it unnecessary to access these properties directly.

Property Description

CameraPosition Specifies the location of the viewpoint in axes units.

CameraPositionMode In automatic mode, the scene determines the position. In
manual mode, you specify the viewpoint location.

CameraTarget Specifies the location in the axes pointed to by the camera.
Together with the CameraPosition, it defines the viewing
axis.

CameraTargetMode In automatic mode, MATLAB® specifies the CameraTarget as
the center of the axes plot box. In manual mode, you specify
the location.

CameraUpVector The rotation of the camera around the viewing axis is defined
by a vector indicating the direction taken as up.

CameraUpVectorMode In automatic mode, MATLAB orients the up vector along the
positive y-axis for 2-D views and along the positive z-axis for
3-D views. In manual mode, you specify the direction.

2-30

file:///B:/matlab/doc/src/toolbox/matlab/ref/axes_props.html%23CameraPosition
file:///B:/matlab/doc/src/toolbox/matlab/ref/axes_props.html%23CameraPositionMode
file:///B:/matlab/doc/src/toolbox/matlab/ref/axes_props.html%23CameraTarget
file:///B:/matlab/doc/src/toolbox/matlab/ref/axes_props.html%23CameraTargetMode
file:///B:/matlab/doc/src/toolbox/matlab/ref/axes_props.html%23CameraUpVector
file:///B:/matlab/doc/src/toolbox/matlab/ref/axes_props.html%23CameraUpVectorMode

Low-Level Camera Properties

Property Description

CameraViewAngle Specifies the field of view of the "lens." If you specify a value
for CameraViewAngle, MATLAB overrides stretch-to-fill
behavior (see “Understanding Axes Aspect Ratio” on page
2-42).

CameraViewAngleMode In automatic mode, MATLAB adjusts the view angle to the
smallest angle that captures the entire scene. In manual
mode, you specify the angle.

Setting CameraViewAngleMode to manual overrides
stretch-to-fill behavior.

Projection Selects either an orthographic or perspective projection.

Default Viewpoint Selection
When all the camera mode properties are set to auto (the default), MATLAB
automatically controls the view, selecting appropriate values based on the
assumption that you want the scene to fill the position rectangle (which is
defined by the width and height components of the axes Position property).

By default, MATLAB

• Sets the CameraPosition so the orientation of the scene is the standard
MATLAB 2-D or 3-D view (see the view command)

• Sets the CameraTarget to the center of the plot box

• Sets the CameraUpVector so the y-direction is up for 2-D views and the
z-direction is up for 3-D views

• Sets the CameraViewAngle to the minimum angle that makes the scene fill
the position rectangle (the rectangle defined by the axes Position property)

• Uses orthographic projection

This default behavior generally produces desirable results. However, you can
change these properties to produce useful effects.

2-31

file:///B:/matlab/doc/src/toolbox/matlab/ref/axes_props.html%23CameraViewAngle
file:///B:/matlab/doc/src/toolbox/matlab/ref/axes_props.html%23CameraViewAngleMode
file:///B:/matlab/doc/src/toolbox/matlab/ref/axes_props.html%23Projection

2 Defining the View

Moving In and Out on the Scene
You can move the camera anywhere in the 3-D space defined by the axes.
The camera continues to point towards the target regardless of its position.
When the camera moves, MATLAB varies the camera view angle to ensure
the scene fills the position rectangle.

Moving Through a Scene
You can create a fly-by effect by moving the camera through the scene. To
do this, continually change CameraPosition property, moving it toward the
target. Because the camera is moving through space, it turns as it moves past
the camera target. Override the MATLAB automatic resizing of the scene each
time you move the camera by setting the CameraViewAngleMode to manual.

If you update the CameraPosition and the CameraTarget, the effect is to pass
through the scene while continually facing the direction of movement.

If the Projection is set to perspective, the amount of perspective distortion
increases as the camera gets closer to the target and decreases as it gets
farther away.

Example — Moving Toward or Away from the Target
To move the camera along the viewing axis, you need to calculate new
coordinates for the CameraPosition property. This is accomplished by
subtracting (to move closer to the target) or adding (to move away from the
target) some fraction of the total distance between the camera position and
the camera target.

The function movecamera calculates a new CameraPosition that moves in on
the scene if the argument dist is positive and moves out if dist is negative.

function movecamera(dist) %dist in the range [-1 1]
set(gca,'CameraViewAngleMode','manual')
newcp = cpos - dist * (cpos - ctarg);
set(gca,'CameraPosition',newcp)
function out = cpos
out = get(gca,'CameraPosition');
function out = ctarg
out = get(gca,'CameraTarget');

2-32

Low-Level Camera Properties

Note that setting the CameraViewAngleMode to manual overrides MATLAB
stretch-to-fill behavior and can cause an abrupt change in the aspect ratio.
See “Understanding Axes Aspect Ratio” on page 2-42 for more information
on stretch-to-fill.

Making the Scene Larger or Smaller
Adjusting the CameraViewAngle property makes the view of the scene larger
or smaller. Larger angles cause the view to encompass a larger area, thereby
making the objects in the scene appear smaller. Similarly, smaller angles
make the objects appear larger.

Changing CameraViewAngle makes the scene larger or smaller without
affecting the position of the camera. This is desirable if you want to zoom in
without moving the viewpoint past objects that will then no longer be in the
scene (as could happen if you changed the camera position). Also, changing

2-33

2 Defining the View

the CameraViewAngle does not affect the amount of perspective applied to
the scene, as changing CameraPosition does when the figure Projection
property is set to perspective.

Revolving Around the Scene
You can use the view command to revolve the viewpoint about the z-axis by
varying the azimuth, and about the azimuth by varying the elevation. This
has the effect of moving the camera around the scene along the surface of a
sphere whose radius is the length of the viewing axis. You could create the
same effect by changing the CameraPosition, but doing so requires you to
perform calculations that MATLAB performs for you when you call view.

For example, the function orbit moves the camera around the scene.

function orbit(deg)
[az el] = view;
rotvec = 0:deg/10:deg;
for i = 1:length(rotvec)

view([az+rotvec(i) el])
drawnow

end

Rotation Without Resizing of Graphics Objects
When CameraViewAngleMode is auto, MATLAB calculates the
CameraViewAngle so that the scene is as large as can fit in the axes position
rectangle. This causes an apparent size change during rotation of the scene.
To prevent resizing during rotation, you need to set the CameraViewAngleMode
to manual (which happens automatically when you specify a value for the
CameraViewAngle property). To do this in the orbit function, add the
statement

set(gca,'CameraViewAngleMode','manual')

Rotation About the Viewing Axis
You can change the orientation of the scene by specifying the direction
defined as up. By default, MATLAB defines up as the y-axis in 2-D
views (the CameraUpVector is [0 1 0]) and the z-axis for 3-D views (the

2-34

Low-Level Camera Properties

CameraUpVector is [0 0 1]). However, you can specify up as any arbitrary
direction.

The vector defined by the CameraUpVector property forms one axis of the
camera’s coordinate system. Internally, MATLAB determines the actual
orientation of the camera up vector by projecting the specified vector onto the
plane that is normal to the camera direction (i.e., the viewing axis). This
simplifies the specification of the CameraUpVector property, because it need
not lie in this plane.

In many cases, you might find it convenient to visualize the desired up vector
in terms of angles with respect to the axes x-, y-, and z-axis. You can then use
direction cosines to convert from angles to vector components. For a unit
vector, the expression simplifies to

where the angles α, β, and γ are specified in degrees.

XComponent = cos(α x (pi 180));
YComponent = cos(β x (pi 180));
ZComponent = cos([[GAMMA]] x (pi 180));

(Consult a mathematics book on vector analysis for a more detailed
explanation of direction cosines.)

2-35

2 Defining the View

Example — Calculating a Camera Up Vector
To specify an up vector that makes an angle of 30° with the z-axis and lies
in the y-z plane, use the expression

upvec = [cos(90*(pi/180)),cos(60*(pi/180)),cos(30*(pi/180))];

and then set the CameraUpVector property.

set(gca,'CameraUpVector',upvec)

Drawing a sphere with this orientation produces

−1 −0.5 0 0.5 1−1

−0.5

0

0.5

1
−1

−0.5

0

0.5

1

Z
−

A
xi

s

Y−Axis

X−Axis

2-36

Understanding View Projections

Understanding View Projections

In this section...

“The Two Types of Projections” on page 2-37

“Projection Types and Camera Location” on page 2-39

The Two Types of Projections
MATLAB® Graphics supports both orthographic and perspective projection
types for displaying 3-D graphics. The one you select depends on the type of
graphics you are displaying:

• orthographic projects the viewing volume as a rectangular parallelepiped
(i.e., a box whose opposite sides are parallel). Relative distance from the
camera does not affect the size of objects. This projection type is useful
when it is important to maintain the actual size of objects and the angles
between objects.

• perspective projects the viewing volume as the frustum of a pyramid
(a pyramid whose apex has been cut off parallel to the base). Distance
causes foreshortening; objects further from the camera appear smaller.
This projection type is useful when you want to display realistic views of
real objects.

By default, MATLAB displays objects using orthographic projection. You can
set the projection type using the camproj command.

These pictures show a drawing of a dump truck (created with patch) and a
surface plot of a mathematical function, both using orthographic projection.

2-37

2 Defining the View

If you measure the width of the front and rear faces of the box enclosing the
dump truck, you’ll see they are the same size. This picture looks unnatural
because it lacks the apparent perspective you see when looking at real objects
with depth. On the other hand, the surface plot accurately indicates the
values of the function within rectangular space.

Now look at the same graphics objects with perspective added. The dump
truck looks more natural because portions of the truck that are farther from
the viewer appear smaller. This projection mimics the way human vision
works. The surface plot, on the other hand, looks distorted.

2-38

Understanding View Projections

Projection Types and Camera Location
By default, MATLAB adjusts the CameraPosition, CameraTarget, and
CameraViewAngle properties to point the camera at the center of the scene
and to include all graphics objects in the axes. If you position the camera so
that there are graphics objects behind the camera, the scene displayed can
be affected by both the axes Projection property and the figure Renderer
property. The following summarizes the interactions between projection type
and rendering method.

Orthographic Perspective

Z-buffer CameraViewAngle determines extent
of scene at CameraTarget.

CameraViewAngle determines extent
of scene from CameraPosition to
infinity.

Painters All objects are displayed regardless of
CameraPosition.

Not recommended if graphics objects
are behind the CameraPosition.

This diagram illustrates what you see (gray area) when using orthographic
projection and Z-buffer. Anything in front of the camera is visible.

2-39

file:///B:/matlab/doc/src/toolbox/matlab/ref/axes_props.html%23CameraPosition
file:///B:/matlab/doc/src/toolbox/matlab/ref/axes_props.html%23CameraTarget
file:///B:/matlab/doc/src/toolbox/matlab/ref/axes_props.html%23Projection
file:///B:/matlab/doc/src/toolbox/matlab/ref/figure_props.html%23Renderer

2 Defining the View

In perspective projection, you see only what is visible in the cone of the
camera view angle.

Painters rendering method is less suited to moving the camera in 3-D
space because MATLAB does not clip along the viewing axis. Orthographic
projection in painters method results in all objects contained in the scene
being visible regardless of the camera position.

2-40

Understanding View Projections

Printing 3-D Scenes
The same effects described in the previous section occur in hardcopy output.
However, because of the differences in the process of rendering to the screen
and to a printing format, MATLAB might render using Z-buffer and generate
printed output using painters. You might need to specify Z-buffer printing
explicitly to obtain the results displayed on the screen (use the -zbuffer
option with the print command).

Additional Information
See Basic Printing and Exporting and Selecting a Renderer in Figure
Properties in the Using MATLAB Graphics documentation for information
on printing and rendering methods.

2-41

2 Defining the View

Understanding Axes Aspect Ratio

In this section...

“Stretch-to-Fill” on page 2-42

“Specifying Axis Scaling” on page 2-42

“Specifying Aspect Ratio” on page 2-43

“Example — axis Command Options” on page 2-44

“Additional Commands for Setting Aspect Ratio” on page 2-46

Stretch-to-Fill
Axes shape graphics objects by setting the scaling and limits of each axis.
When you create a graph, the values or size of the plotted data automatically
determines axis scaling , and then draws the axes to fit the space available
for display. Axes aspect ratio properties control how MATLAB® performs the
scaling required to create a graph.

By default, the size of the axes MATLAB creates for plotting is normalized
to the size of the figure window (but is slightly smaller to allow for borders).
If you resize the figure, the size and possibly the aspect ratio (the ratio of
width to height) of the axes changes proportionally. This enables the axes to
always fill the available space in the window. MATLAB also sets the x-, y-,
and z-axis limits to provide the greatest resolution in each direction, again
optimizing the use of available space.

This stretch-to-fill behavior is generally desirable; however, you might want
to control this process to produce specific results. For example, images need
to be displayed in correct proportions regardless of the aspect ratio of the
figure window, or you might want graphs always to be a particular size on a
printed page.

Specifying Axis Scaling
The axis command enables you to adjust the scaling of graphs. By default,
MATLAB finds the maxima and minima of the plotted data and chooses
appropriate axes ranges. You can override the defaults by setting axis limits.

2-42

Understanding Axes Aspect Ratio

axis([xmin xmax ymin ymax zmin zmax])

You can control how MATLAB scales the axes with predefined axis options:

• axis auto returns the axis scaling to its default, automatic mode. v
= axis saves the scaling of the axes of the current plot in vector v. For
subsequent graphics commands to have these same axis limits, follow
them with axis(v).

• axis manual freezes the scaling at the current limits. If you then set hold
on, subsequent plots use the current limits. Specifying values for axis
limits also sets axis scaling to manual.

• axis tight sets the axis limits to the range of the data.

• axis ij places MATLAB into its "matrix" axes mode. The coordinate system
origin is at the upper left corner. The i-axis is vertical and is numbered from
top to bottom. The j-axis is horizontal and is numbered from left to right.

• axis xy places MATLAB into its default Cartesian axes mode. The
coordinate system origin is at the lower left corner. The x-axis is horizontal
and is numbered from left to right. The y-axis is vertical and is numbered
from bottom to top.

Specifying Aspect Ratio
The axis command enables you to adjust the aspect ratio of graphs. Normally
MATLAB stretches the axes to fill the window. In many cases, it is more useful
to specify the aspect ratio of the axes based on a particular characteristic such
as the relative length or scaling of each axis. The axis command provides a
number of useful options for adjusting the aspect ratio:

• axis equal changes the current axes scaling so that equal tick mark
increments on the x-, y-, and z-axis are equal in length. This makes the
surface displayed by sphere look like a sphere instead of an ellipsoid. axis
equal overrides stretch-to-fill behavior.

• axis square makes each axis the same length and overrides stretch-to-fill
behavior.

• axis vis3d freezes aspect ratio properties to enable rotation of 3-D objects
and overrides stretch-to-fill. Use this option after other axis options to
keep settings from changing while you rotate the scene.

2-43

2 Defining the View

• axis image makes the aspect ratio of the axes the same as the image.

• axis auto returns the x-, y-, and z-axis limits to automatic selection mode.

• axis normal restores the current axis box to full size and removes any
restrictions on the scaling of the units. It undoes the effects of axis square.
Used in conjunction with axis auto, it undoes the effects of axis equal.

The axis command works by manipulating axes graphics object properties.

Example — axis Command Options
The following three pictures illustrate the effects of three axis options on a
cylindrical surface created with the statements

t = 0:pi/6:4*pi;
[x,y,z] = cylinder(4+cos(t),30);
surf(x,y,z)

axis normal is the default behavior. MATLAB automatically sets the axis
limits to span the data range along each axis and stretches the plot to fit
the figure window.

−5

0

5

−5

0

5
0

0.2

0.4

0.6

0.8

1

axis normal

2-44

file:///B:/matlab/doc/src/toolbox/matlab/ref/axes_props.html

Understanding Axes Aspect Ratio

axis square creates an axes that is square regardless of the shape of the
figure window. The cylindrical surface is no longer distorted because it is not
warped to fit the window. However, the size of one data unit is not equal
along all axes (the z-axis spans only one unit while the x-axes and y-axes
span 10 units each).

−5

0

5

−5

0

5
0

0.2

0.4

0.6

0.8

1

axis square

axis equal makes the length of one data unit equal along each axis while
maintaining a nearly square plot box. It also prevents warping of the axis to
fill the window’s shape.

−5

0

5

−4

−2

0

2

4

0
0.5

1

axis equal

2-45

2 Defining the View

Additional Commands for Setting Aspect Ratio
You can control the aspect ratio of your graph in three ways:

• Specifying the relative scales of the x-, y-, and z-axes (data aspect ratio)

• Specifying the shape of the space defined by the axes (plot box aspect ratio)

• Specifying the axis limits

The following commands enable you to set these values.

Command Purpose

daspect Set or query the data aspect ratio

pbaspect Set or query the plot box aspect ratio

xlim Set or query x-axis limits

ylim Set or query y-axis limits

zlim Set or query z-axis limits

See “Manipulating Axes Aspect Ratio” on page 2-47 for a list of the axes
properties that control aspect ratio.

2-46

Manipulating Axes Aspect Ratio

Manipulating Axes Aspect Ratio

In this section...

“Axes Aspect Ratio Properties” on page 2-47

“Default Aspect Ratio Selection” on page 2-48

“Overriding Stretch-to-Fill” on page 2-51

“Effects of Setting Aspect Ratio Properties” on page 2-52

“Example — Displaying Cross-Sections of Surfaces” on page 2-55

“Example — Displaying Real Objects” on page 2-57

Axes Aspect Ratio Properties
The axis command works by setting various axes object properties. You can
set these properties directly to achieve precisely the effect you want.

Property Description

DataAspectRatio Sets the relative scaling of the individual axis data values.
Set DataAspectRatio to [1 1 1] to display real-world
objects in correct proportions. Specifying a value for
DataAspectRatio overrides stretch-to-fill behavior.

DataAspectRatioMode In auto, MATLAB® software selects axis scales that
provide the highest resolution in the space available.

PlotBoxAspectRatio Sets the proportions of the axes plot box (set box to on to
see the box). Specifying a value for PlotBoxAspectRatio
overrides stretch-to-fill behavior.

PlotBoxAspectRatioMode In auto, MATLAB sets the PlotBoxAspectRatio to [1 1
1] unless you explicitly set the DataAspectRatio and/or
the axis limits.

Position Defines the location and size of the axes with a four-element
vector: [left offset, bottom offset, width, height].

XLim, YLim, ZLim Sets the minimum and maximum limits of the respective
axes.

XLimMode, YLimMode, ZLimMode In auto, MATLAB selects the axis limits.

2-47

file:///B:/matlab/doc/src/toolbox/matlab/ref/axes_props.html%23DataAspectRatio
file:///B:/matlab/doc/src/toolbox/matlab/ref/axes_props.html%23DataAspectRatioMode
file:///B:/matlab/doc/src/toolbox/matlab/ref/axes_props.html%23PlotBoxAspectRatio
file:///B:/matlab/doc/src/toolbox/matlab/ref/axes_props.html%23PlotBoxAspectRatioMode
file:///B:/matlab/doc/src/toolbox/matlab/ref/axes_props.html%23Position
file:///B:/matlab/doc/src/toolbox/matlab/ref/axes_props.html%23XLim
file:///B:/matlab/doc/src/toolbox/matlab/ref/axes_props.html%23XLimMode

2 Defining the View

By default, MATLAB automatically determines values for all of these
properties (i.e., all the modes are auto) and then applies stretch-to-fill. You
can override any property’s automatic operation by specifying a value for the
property or setting its mode to manual. The value you select for a particular
property depends primarily on what type of data you want to display.

Much of the data visualized with MATLAB is either

• Numerical data displayed as line or mesh plots

• Representations of real-world objects (e.g., a dump truck or a section of the
earth’s topography)

In the first case, it is generally desirable to select axis limits that provide good
resolution in each axis direction and to fill the available space. Real-world
objects, on the other hand, need to be represented accurately in proportion,
regardless of the angle of view.

Default Aspect Ratio Selection
There are two key elements to the default behavior — normalizing the axes
size to the window size and stretch-to-fill.

The axes Position property specifies the location and dimensions of the
axes. The third and fourth elements of the Position vector (width and
height) define a rectangle in which MATLAB draws the axes (indicated by
the dotted line in the following pictures). MATLAB stretches the axes to
fill this rectangle.

The default value for the axes Units property is normalized to the parent
figure dimensions. This means the shape of the figure window determines
the shape of the position rectangle. As you change the size of the window,
MATLAB reshapes the position rectangle to fit it.

2-48

file:///B:/matlab/doc/src/toolbox/matlab/ref/axes_props.html%23Position
file:///B:/matlab/doc/src/toolbox/matlab/ref/axes_props.html%23Units

Manipulating Axes Aspect Ratio

The view is the 2-D projection of the plot box onto the screen.

As you can see, reshaping the axes to fit into the figure window can change
the aspect ratio of the graph. MATLAB applies stretch-to-fill so the axes
fill the position rectangle and in the process can distort the shape. This is

2-49

2 Defining the View

generally desirable for graphs of numeric data, but not for displaying objects
realistically.

Example — MATLAB® Defaults
MATLAB surface plots are well suited for visualizing mathematical functions
of two variables. For example, to display a mesh plot of the function

evaluated over the range -2 ≤ x ≤ 2, -4 ≤ y ≤ 4, use the
statements

[X,Y] = meshgrid([-2:.15:2],[-4:.3:4]);
Z = X.*exp(-X.^2 - Y.^2);
mesh(X,Y,Z)

The MATLAB default property values are designed to

• Select axis limits to span the range of the data (XLimMode, YLimMode, and
ZLimMode are set to auto).

• Provide the highest resolution in the available space by setting the
scale of each axis independently (DataAspectRatioMode and the
PlotBoxAspectRatioMode are set to auto).

• Draw axes that fit the position rectangle by adjusting the CameraViewAngle
and then stretch-to-fill the axes if necessary.

2-50

Manipulating Axes Aspect Ratio

Overriding Stretch-to-Fill
To maintain a particular shape, you can specify the size of the axes in
absolute units such as inches, which are independent of the figure window
size. However, this is not a good approach if you are writing an M-file that you
want to work with a figure window of any size. A better approach is to specify
the aspect ratio of the axes and override automatic stretch-to-fill.

In cases where you want a specific aspect ratio, you can override stretching by
specifying a value for these axes properties:

• DataAspectRatio or DataAspectRatioMode

• PlotBoxAspectRatio or PlotBoxAspectRatioMode

• CameraViewAngle or CameraViewAngleMode

The first two sets of properties affect the aspect ratio directly. Setting
either of the mode properties to manual simply disables stretch-to-fill while
maintaining all current property values. In this case, MATLAB enlarges the
axes until one dimension of the position rectangle constrains it.

Setting the CameraViewAngle property disables stretch-to-fill, and also
prevents MATLAB from readjusting the size of the axes if you change the view.

2-51

2 Defining the View

Effects of Setting Aspect Ratio Properties
It is important to understand how properties interact with each other, in order
to obtain the results you want. The DataAspectRatio, PlotBoxAspectRatio,
and the x-, y-, and z-axis limits (XLim, YLim, and ZLim properties) all place
constraints on the shape of the axes.

Data Aspect Ratio
The DataAspectRatio property controls the ratio of the axis scales. For a
mesh plot of the function evaluated over the range -2 ≤
x ≤ 2, -4 ≤ y ≤ 4

[X,Y] = meshgrid([-2:.15:2],[-4:.3:4]);
Z = X.*exp(-X.^2 - Y.^2);
mesh(X,Y,Z)

the values are

get(gca,'DataAspectRatio')
ans =

4 8 1

This means that four units in length along the x-axis cover the same data
values as eight units in length along the y-axis and one unit in length along
the z-axis. The axes fill the plot box, which has an aspect ratio of [1 1 1] by
default.

If you want to view the mesh plot so that the relative magnitudes along each
axis are equal with respect to each other, you can set the DataAspectRatio
to [1 1 1].

set(gca,'DataAspectRatio',[1 1 1])

2-52

file:///B:/matlab/doc/src/toolbox/matlab/ref/axes_props.html%23DataAspectRatio

Manipulating Axes Aspect Ratio

−2
−1

0
1

2

−4

−3

−2

−1

0

1

2

3

4
−0.5

0

0.5

Setting the value of the DataAspectRatio property also sets the
DataAspectRatioMode to manual and overrides stretch-to-fill so the specified
aspect ratio is achieved.

Plot Box Aspect Ratio
Looking at the value of the PlotBoxAspectRatio for the graph in the
previous section shows that it has now taken on the former value of the
DataAspectRatio.

get(gca,'PlotBoxAspectRatio')
ans =

4 8 1

MATLAB has rescaled the plot box to accommodate the graph using the
specified DataAspectRatio.

The PlotBoxAspectRatio property controls the shape of the axes plot
box. MATLAB sets this property to [1 1 1] by default and adjusts the
DataAspectRatio property so that graphs fill the plot box if stretching is on,
or until reaching a constraint if stretch-to-fill has been overridden.

2-53

file:///B:/matlab/doc/src/toolbox/matlab/ref/axes_props.html%23PlotBoxAspectRatio

2 Defining the View

When you set the value of the DataAspectRatio and thereby prevent it from
changing, MATLAB varies the PlotBoxAspectRatio instead. If you specify
both the DataAspectRatio and the PlotBoxAspectRatio, MATLAB is forced
to change the axis limits to obey the two constraints you have already defined.

Continuing with the mesh example, if you set both properties,

set(gca,'DataAspectRatio',[1 1 1],...
'PlotBoxAspectRatio',[1 1 1])

MATLAB changes the axis limits to satisfy the two constraints placed on
the axes.

−2

0

2

−4

−2

0

2

−2

0

2

Adjusting Axis Limits
MATLAB enables you to set the axis limits to the values you want. However,
specifying a value for DataAspectRatio, PlotBoxAspectRatio, and the axis
limits overconstrains the axes definition. For example, it is not possible for
MATLAB to draw the axes if you set these values:

set(gca,'DataAspectRatio',[1 1 1],...
'PlotBoxAspectRatio',[1 1 1],...

2-54

Manipulating Axes Aspect Ratio

'XLim',[-4 4],...
'YLim',[-4 4],...
'ZLim',[-1 1])

In this case, MATLAB ignores the setting of the PlotBoxAspectRatio and
determines its value automatically. These particular values cause the
PlotBoxAspectRatio to return to its calculated value.

get(gca,'PlotBoxAspectRatio')
ans =

4 8 1

MATLAB can now draw the axes using the specified DataAspectRatio and
axis limits.

−4

−2

0

2

4

−4

−2

0

2

4
−1

0

1

Example — Displaying Cross-Sections of Surfaces
Sometimes projecting a 3-D surface onto an x-, y-, or z-axis can aid
visualization. To do this, you might change the aspect ratio, in order to make
space for the projection. The following example illustrates how to do this:

2-55

2 Defining the View

1 Create an x-y grid and z-values for it:

[x,y] = meshgrid([-2:.2:2]);
Z = x.*exp(-x.^2-y.^2);

2 Plot the surface in 3-D; annotate with a colorbar and axis labels:

surf(x,y,Z,gradient(Z))
colorbar
xlabel('X-AXIS')
ylabel('Y-AXIS')
zlabel('Z-AXIS')

3 Use axis to change the Ymax value in to 3, stretching the plot in one
direction:

axis([-2 2 -2 3 -0.5 0.5]) %

4 Regrid the surface, setting all Y-values equal to 3:

y = 3*ones(21);

5 Plaster a plot of the surface onto the Y-axis:

2-56

Manipulating Axes Aspect Ratio

hold on
surf(x,y,Z,gradient(Z))

Example — Displaying Real Objects
If you want to display an object so that it looks realistic, you need to change
MATLAB defaults. For example, this data defines a wedge-shaped patch
object.

patch('Vertices',vertex_list,'Faces',vertex_connection,...

2-57

2 Defining the View

'FaceColor','w','EdgeColor','k')
view(3)

0
0.5

1

0
0.5

1
0

0.5

1

1.5

2

2.5

3

3.5

4

However, this axes distorts the actual shape of the solid object defined by the
data. To display it in correct proportions, set the DataAspectRatio.

set(gca,'DataAspectRatio',[1 1 1])

The units are now equal in the x-, y-, and z-directions and the axes is not being
stretched to fill the position rectangle, revealing the true shape of the object.

2-58

Manipulating Axes Aspect Ratio

0 0.5 1
00.51

0

0.5

1

1.5

2

2.5

3

3.5

4

2-59

2 Defining the View

2-60

3

Lighting as a Visualization
Tool

Lighting Overview (p. 3-2) Contains links to examples
throughout the graphics
documentation that illustrate
the use of lighting

Selecting a Lighting Method (p. 3-8) Illustration of various lighting
methods showing which to use

Reflectance Characteristics of
Graphics Objects (p. 3-10)

Catalog illustrating various lighting
characteristics

3 Lighting as a Visualization Tool

Lighting Overview

In this section...

“Lighting Commands” on page 3-2

“Light Objects” on page 3-2

“Properties That Affect Lighting” on page 3-3

“Examples of Lighting Control” on page 3-5

Lighting Commands
The MATLAB® graphics environment provides commands that enable you
to position light sources and adjust the characteristics of lit objects. These
commands include the following.

Command Purpose

camlight Create or move a light with respect to the camera
position

lightangle Create or position a light in spherical coordinates

light Create a light object

lighting Select a lighting method

material Set the reflectance properties of lit objects

You might find it useful to set light or lit-object properties directly to achieve
specific results. In addition to the material in this topic area, you can explore
the following lighting examples as an introduction to lighting for visualization.

Light Objects
You create a light object using the light function. Three important light
object properties are

• Color — Color of the light cast by the light object

• Style — Either infinitely far away (the default) or local

3-2

file:///B:/matlab/doc/src/toolbox/matlab/ref/light_props.html
file:///B:/matlab/doc/src/toolbox/matlab/ref/light_props.html
file:///B:/matlab/doc/src/toolbox/matlab/ref/light_props.html%23Color
file:///B:/matlab/doc/src/toolbox/matlab/ref/light_props.html%23Style

Lighting Overview

• Position — Direction (for infinite light sources) or the location (for local
light sources)

The Color property determines the color of the directional light from the light
source. The color of an object in a scene is determined by the color of the
object and the light source.

The Style property determines whether the light source is a point source
(Style set to local), which radiates from the specified position in all
directions, or a light source placed at infinity (Style set to infinite), which
shines from the direction of the specified position with parallel rays.

The Position property specifies the location of the light source in axes data
units. In the case of a light source at infinity, Position specifies the direction
to the light source.

Lights affect surface and patch objects that are in the same axes as the light.
These objects have a number of properties that alter the way they look when
illuminated by lights.

Properties That Affect Lighting
You cannot see light objects themselves, but you can see their effects on any
patch and surface objects present in the axes containing the light. A number
of functions create these objects, including surf, mesh, pcolor, fill, and
fill3 as well as the surface and patch functions.

You control lighting effects by setting various axes, light, patch, and surface
object properties. All properties have default values that generally produce
desirable results. However, you can achieve the specific effect you want by
adjusting the values of these properties.

Property Effect

AmbientLightColor An axes property that specifies the color of the background
light in the scene, which has no direction and affects all objects
uniformly. Ambient light effects occur only when there is a
visible light object in the axes.

3-3

file:///B:/matlab/doc/src/toolbox/matlab/ref/light_props.html%23Position

3 Lighting as a Visualization Tool

Property Effect

AmbientStrength A patch and surface property that determines the intensity of the
ambient component of the light reflected from the object.

DiffuseStrength A patch and surface property that determines the intensity of the
diffuse component of the light reflected from the object.

SpecularStrength A patch and surface property that determines the intensity of the
specular component of the light reflected from the object.

SpecularExponent A patch and surface property that determines the size of the
specular highlight.

SpecularColorReflectance A patch and surface property that determines the degree to
which the specularly reflected light is colored by the object color
or the light source color.

FaceLighting A patch and surface property that determines the method used
to calculate the effect of the light on the faces of the object.
Choices are either no lighting, or flat, Gouraud, or Phong lighting
algorithms.

EdgeLighting A patch and surface property that determines the method used
to calculate the effect of the light on the edges of the object.
Choices are either no lighting, or flat, Gouraud, or Phong lighting
algorithms.

BackFaceLighting A patch and surface property that determines how faces are lit
when their vertex normals point away from the camera. This
property is useful for discriminating between the internal and
external surfaces of an object.

FaceColor A patch and surface property that specifies the color of the object
faces.

EdgeColor A patch and surface property that specifies the color of the object
edges.

3-4

Lighting Overview

Property Effect

VertexNormals A patch and surface property that contains normal vectors for
each vertex of the object. MATLAB uses vertex normal vectors
to perform lighting calculations. While MATLAB automatically
generates this data, you can also specify your own vertex
normals.

NormalMode A patch and surface property that determines whether MATLAB
recalculates vertex normals if you change object data (auto) or
uses the current values of the VertexNormals property (manual).
If you specify values for VertexNormals, MATLAB sets this
property to manual.

For more information, see descriptions of axes, surface, and patch object
properties.

Examples of Lighting Control
Lighting is a technique for adding realism to a graphical scene. It does this by
simulating the highlights and dark areas that occur on objects under natural
lighting (e.g., the directional light that comes from the sun). To create lighting
effects, MATLAB defines a graphics object called a light. MATLAB applies
lighting to surface and patch objects.

These examples illustrate the use of lighting in a visualization context.

• Tracing a stream line through a volume — Sets properties of surfaces,
patches, and lights (MATLAB Graphics documentation).

• Using slice planes and cone plots — Sets lighting characteristics of objects
in a scene independently to achieve a desired result (MATLAB coneplot
function).

• Lighting multiple slice planes independently to visualize fluid flow
(MATLAB Graphics documentation).

• Combining single-color lit surfaces with interpolated coloring. See
"Example — Visualizing MRI Data" (3–D Visualization documentation).

3-5

file:///B:/matlab/doc/src/toolbox/matlab/ref/axes_props.html
file:///B:/matlab/doc/src/toolbox/matlab/ref/surface_props.html
file:///B:/matlab/doc/src/toolbox/matlab/ref/patch_props.html
file:///B:/matlab/doc/src/toolbox/matlab/ref/coneplot.html%23coneplot_lighting

3 Lighting as a Visualization Tool

• Employing lighting to reveal surface shape. The fluid flow isosurface
example and the surface plot of the sinc function examples illustrate this
technique (3–D Visualization documentation).

Example — Adding Lights to a Scene
This example displays the membrane surface and illuminates it with a light
source emanating from the direction defined by the position vector [0 -2 1].
This vector defines a direction from the axes origin passing through the point
with the coordinates 0, -2, 1. The light shines from this direction toward
the axes origin.

membrane
light('Position',[0 -2 1])

Creating a light activates a number of lighting-related properties controlling
characteristics such as the ambient light and reflectance properties of objects.
It also switches to Z-buffer renderer if not already in that mode.

3-6

Lighting Overview

Example — Illuminating Mathematical Functions
Lighting can enhance surface graphs of mathematical functions.
For example, use the ezsurf command to evaluate the

expression over the region -6π to
6π.

ezsurf('sin(sqrt(x^2+y^2))/sqrt(x^2+y^2)',[-6*pi,6*pi])

Now add lighting using the lightangle command, which accepts the light
position in terms of azimuth and elevation.

view(0,75)
shading interp
lightangle(-45,30)
set(gcf,'Renderer','zbuffer')
set(findobj(gca,'type','surface'),...

'FaceLighting','phong',...
'AmbientStrength',.3,'DiffuseStrength',.8,...
'SpecularStrength',.9,'SpecularExponent',25,...
'BackFaceLighting','unlit')

After obtaining the surface object’s handle using findobj, you can set
properties that affect how the light reflects from the surface. See for more
detailed descriptions of these properties.

3-7

3 Lighting as a Visualization Tool

Selecting a Lighting Method

Face and Edge Lighting Methods
When you add lights to an axes, MATLAB® rendering software determines the
effects these lights have on the patch and surface objects that are displayed in
that axes. There are different methods used to calculate the face and edge
coloring of lit objects, and the one you select depends on the results you want
to obtain.

MATLAB supports three different algorithms for lighting calculations,
selected by setting the FaceLighting and EdgeLighting properties of each
patch and surface object in the scene. Each algorithm produces somewhat
different results:

• Flat lighting — Produces uniform color across each of the faces of the
object. Select this method to view faceted objects.

• Gouraud lighting — Calculates the colors at the vertices and then
interpolates colors across the faces. Select this method to view curved
surfaces.

• Phong lighting — Interpolates the vertex normals across each face and
calculates the reflectance at each pixel. Select this choice to view curved
surfaces. Phong lighting generally produces better results than Gouraud
lighting, but takes longer to render.

This illustration shows how a red sphere looks using each of the lighting
methods with one white light source.

3-8

Selecting a Lighting Method

The lighting command (as opposed to the light function) provides a
convenient way to set the lighting method.

3-9

3 Lighting as a Visualization Tool

Reflectance Characteristics of Graphics Objects

In this section...

“Specular and Diffuse Reflection” on page 3-10

“Ambient Light” on page 3-11

“Specular Exponent” on page 3-12

“Specular Color Reflectance” on page 3-13

“Back Face Lighting” on page 3-13

“Positioning Lights in Data Space” on page 3-16

Specular and Diffuse Reflection
You can specify the reflectance characteristics of patch and surface objects
and thereby affect the way they look when lights are applied to the scene.
It is likely you will adjust these characteristics in combination to produce
particular results.

Also see the material command for a convenient way to produce certain
lighting effects.

You can control the amount of specular and diffuse reflection from the
surface of an object by setting the SpecularStrength and DiffuseStrength
properties. This picture illustrates various settings.

3-10

Reflectance Characteristics of Graphics Objects

Ambient Light
Ambient light is a directionless light that shines uniformly on all objects in the
scene. Ambient light is visible only when there are light objects in the axes.
There are two properties that control ambient light — AmbientLightColor
is an axes property that sets the color, and AmbientStrength is a property
of patch and surface objects that determines the intensity of the ambient
light on the particular object.

This illustration shows three different ambient light colors at various
intensities. The sphere is red and there is a white light object present.

3-11

3 Lighting as a Visualization Tool

The green [0 1 0] ambient light does not affect the scene because there is no
red component in green light. However, the color defined by the RGB values
[.5 0 1] does have a red component, so it contributes to the light on the sphere
(but less than the white [1 1 1] ambient light).

Specular Exponent
The size of the specular highlight spot depends on the value of the patch and
surface object’s SpecularExponent property. Typical values for this property
range from 1 to 500, with normal objects having values in the range 5 to 20.

This illustration shows a red sphere illuminated by a white light with three
different values for the SpecularExponent property.

3-12

Reflectance Characteristics of Graphics Objects

Specular Color Reflectance
The color of the specularly reflected light can range from a combination of the
color of the object and the color of the light source to the color of the light
source only. The patch and surface SpecularColorReflectance property
controls this color. This illustration shows a red sphere illuminated by a white
light. The values of the SpecularColorReflectance property range from 0
(object and light color) to 1 (light color).

Back Face Lighting
Back face lighting is useful for showing the difference between internal and
external faces. These pictures of cut-away cylindrical surfaces illustrate the
effects of back face lighting.

3-13

3 Lighting as a Visualization Tool

The default value for BackFaceLighting is reverselit. This setting
reverses the direction of the vertex normals that face away from the camera,
causing the interior surface to reflect light towards the camera. Setting
BackFaceLighting to unlit disables lighting on faces with normals that
point away from the camera.

You can also use BackFaceLighting to remove edge effects for closed objects.
These effects occur when BackFaceLighting is set to reverselit and pixels
along the edge of a closed object are lit as if their vertex normals faced the
camera. This produces an improperly lit pixel because the pixel is visible but
is really facing away from the camera.

To illustrate this effect, the next picture shows a blowup of the edge of a lit
sphere. Setting BackFaceLighting to lit prevents the improper lighting
of pixels.

3-14

Reflectance Characteristics of Graphics Objects

3-15

3 Lighting as a Visualization Tool

Positioning Lights in Data Space
This example creates a sphere and a cube to illustrate the effects of various
properties on lighting. The variables vert and fac define the cube using the
patch function.

sphere(36);
h = findobj('Type','surface');
set(h,'FaceLighting','phong',...

'FaceColor','interp',...
'EdgeColor',[.4 .4 .4],...
'BackFaceLighting','lit')

hold on
patch('faces',fac,'vertices',vert,'FaceColor','y');
light('Position',[1 3 2]);
light('Position',[-3 -1 3]);
material shiny
axis vis3d off
hold off

All faces of the cube have FaceColor set to yellow. The sphere function
creates a spherical surface and the handle of this surface is obtained using
findobj to search for the object whose Type property is surface. The light
functions define two white (the default color) light objects located at infinity
in the direction specified by the Position vectors. These vectors are defined
in axes coordinates [x, y, z].

3-16

Reflectance Characteristics of Graphics Objects

The patch uses flat FaceLighting (the default) to enhance the visibility of
each side. The surface uses phong FaceLighting because it produces the
smoothest interpolation of lighting effects. The material shiny command
affects the reflectance properties of both the cube and sphere (although its
effects are noticeable only on the sphere because of the cube’s flat shading).

Because the sphere is closed, the BackFaceLighting property is changed
from its default setting, which reverses the direction of vertex normals that
face away from the camera, to normal lighting, which removes undesirable
edge effects.

Examining the code in the lighting and material M-files can help you
understand how various properties affect lighting.

3-17

3 Lighting as a Visualization Tool

3-18

4

Transparency

Making Objects Transparent (p. 4-2) Overview of the object properties
that specify transparency

Mapping Data to Transparency —
Alpha Data (p. 4-8)

How to use transparency as another
dimension for visualizing data

Selecting an Alphamap (p. 4-12) Characteristics of various alphamaps
and illustrations of the effects they
produce

4 Transparency

Making Objects Transparent

In this section...

“About Transparency” on page 4-2

“Specifying Transparency” on page 4-3

“Example — A Transparent Isosurface” on page 4-5

About Transparency
Making graphics objects semitransparent is a useful technique in 3-D
visualization to make it possible to see an object, while at the same time, see
what information the object would obscure if it was completely opaque. You
can also use transparency as another dimension for displaying data, much the
way color is used in MATLAB® Graphics.

The transparency of a graphics object determines the degree to which you can
see through the object. You can specify a continuous range of transparency
varying from completely transparent (i.e., invisible) to completely opaque
(i.e., no transparency).

Objects that support transparency are

• Image

• Patch

• Surface

The following picture illustrates the effect of transparency. The green
isosurface (patch object) reveals the cone plot that lies in the interior.

4-2

Making Objects Transparent

Note You must have OpenGL® available on your system to use transparency.
When rendering transparency MATLAB automatically uses OpenGL if it is
available. If it is not available, transparency does not display. See the figure
property RendererMode for more information.

Specifying Transparency
Transparency values, which range from [0 1], are referred to as alpha values.
An alpha value of 0 means completely transparent (i.e., invisible); an alpha
value of 1 means completely opaque (i.e., no transparency).

MATLAB treats transparency in a way that is analogous to how it treats
color for the respective objects:

4-3

file:///B:/matlab/doc/src/toolbox/matlab/ref/figure_props.html%23RendererMode

4 Transparency

• Patches and surfaces can define a single face and edge alpha value or use
flat or interpolated transparency based on values in the figure’s alphamap.

• Images, patches, and surfaces can define alpha data that is used as indices
into the alphamap or directly as alpha values.

• Axes define alpha limits that control the mapping of object data to alpha
values.

• Figures contain alphamaps, which are m-by-1 arrays of alpha values.

See the following sections for more information on color:

• “Specifying Patch Coloring” on page 5-14 in Creating 3-D Models with
Patches in the Using MATLAB Graphics documentation

• “Coloring Mesh and Surface Plots” on page 1-16 in Creating 3-D Graphs
in the Using MATLAB Graphics documentation

Transparency Properties
The following table summarizes the object properties that control
transparency.

Property Purpose

AlphaData Transparency data for image and surface objects

AlphaDataMapping Transparency data mapping method

FaceAlpha Transparency of the faces (patch and surface
only)

EdgeAlpha Transparency of the edges (patch and surface
only)

FaceVertexAlphaData Patch only alpha data property

ALim Alpha axis limits

ALimMode Alpha axis limits mode

Alphamap Figure alphamap

4-4

file:///B:/matlab/doc/src/toolbox/matlab/ref/surface_props.html%23AlphaData
file:///B:/matlab/doc/src/toolbox/matlab/ref/surface_props.html%23AlphaDataMapping
file:///B:/matlab/doc/src/toolbox/matlab/ref/surface_props.html%23FaceAlpha
file:///B:/matlab/doc/src/toolbox/matlab/ref/surface_props.html%23EdgeAlpha
file:///B:/matlab/doc/src/toolbox/matlab/ref/patch_props.html%23FaceVertexAlphaData
file:///B:/matlab/doc/src/toolbox/matlab/ref/axes_props.html%23ALim
file:///B:/matlab/doc/src/toolbox/matlab/ref/axes_props.html%23ALimMode
file:///B:/matlab/doc/src/toolbox/matlab/ref/figure_props.html%23Alphamap

Making Objects Transparent

Transparency Functions
There are three functions that simplify the process of setting alpha properties.

Function Purpose

alpha Set or query transparency properties for objects
in current axes

alphamap Specify the figure alphamap

alim Set or query the axes alpha limits

Example — A Transparent Isosurface
Specifying a single transparency value for graphics objects is useful when you
want to reveal structure that is obscured with opaque objects. For patches
and surfaces, use the FaceAlpha and EdgeAlpha properties to specify the
transparency of faces and edges. The following example illustrates this.

This example uses the flow function to generate data for the speed profile
of a submerged jet within an infinite tank. One way to visualize this data
is by creating an isosurface illustrating where the rate of flow is equal to a
specified value.

[x y z v] = flow;
p = patch(isosurface(x,y,z,v,-3));
isonormals(x,y,z,v,p);
set(p,'facecolor','red','edgecolor','none');
daspect([1 1 1]);
view(3); axis tight; grid on;
camlight; lighting gouraud;

4-5

file:///B:/matlab/doc/src/toolbox/matlab/ref/isosurface.html

4 Transparency

Adding transparency to the isosurface reveals that there is greater complexity
in the fluid flow than is visible using the opaque surface. The statement

alpha(.5)

sets the FaceAlpha value for the isosurface face to .5.

Setting a Single Transparency Value for Images
For images, the statement

4-6

file:///B:/matlab/doc/src/toolbox/matlab/ref/patch_props.html%23FaceAlpha

Making Objects Transparent

alpha(.5)

sets AlphaData to .5. When the AlphaDataMapping property is set to none
(the default), setting AlphaData on an image causes the entire image to be
rendered with the specified alpha value.

4-7

4 Transparency

Mapping Data to Transparency — Alpha Data

In this section...

“What Is Alpha Data?” on page 4-8

“Size of the Alpha Data Array” on page 4-9

“Mapping Alpha Data to the Alphamap” on page 4-9

“Example — Mapping Data to Color or Transparency” on page 4-10

What Is Alpha Data?
Alpha data is analogous to color data (e.g., the CData property of surfaces).
When you create a surface, MATLAB® rendering software maps each element
in the color data array to a color in the colormap. Similarly, each element in
the alpha data maps to a transparency value in the alphamap.

Specify surface and image alpha data with the AlphaData property. For patch
objects, use the FaceVertexAlphaData property.

You can control how MATLAB interprets alpha data with the following
properties:

• FaceAlpha and EdgeAlpha — Enable you to select flat or interpolated
transparency rendering. If set to a single transparency value, MATLAB
applies this value to all faces or edges and does not use the alpha data.

• AlphaDataMapping and ALim — Determine how MATLAB maps the alpha
data to the alphamap. By default, MATLAB scales the alpha data to be
within the range [0 1].

• Alphamap — Contains the actual transparency values to which the data
is to be mapped.

Note that there are differences between the default values of equivalent
color and alpha properties because, in contrast to color, transparency is not
displayed by default. The following table highlights these differences.

4-8

Mapping Data to Transparency — Alpha Data

Color Property Default Alpha Property Default

FaceColor Flat FaceAlpha 1 (opaque)

CData Equal to ZData AlphaData and
FaceVertexAlphaData

1 (scalar)

By default, objects have single-valued alpha data. Therefore you cannot
specify flat or interp FaceAlpha or EdgeAlpha without first setting
AlphaData to an array of the appropriate size.

The sections that follow illustrate how to use these properties to display object
data as degrees of transparency.

Size of the Alpha Data Array
In order to use nonscalar alpha data, you need to specify the alpha data as an
array equal in size to

• CData of images and surfaces

• The number of faces (flat) or the number of vertices (interpolated) defined
in the FaceVertexAlphaData property of patches

Once you have specified an alpha data array of the proper size, you can select
the face and edge rendering you want to use. Flat uses one transparency
value per face, while interpolated performs bilinear interpolation of the
values at each vertex.

Mapping Alpha Data to the Alphamap
You can control how MATLAB maps the alpha data to the alphamap using the
AlphaDataMapping property. There are three possible mappings:

• none — Interpret the values in alpha data as transparency values (data
values must be between 0 and 1, or will be clamped to 0 or 1). This is the
default mapping.

4-9

4 Transparency

• scaled — Transform the alpha data to span the portion of the alphamap
indicated by the axes ALim property, linearly mapping data values to alpha
values. This is the same way color data is mapped to the colormap.

• direct — Use the alpha data directly as indices into the figure alphamap.

By default, objects have scalar alpha data (AlphaData and
FaceVertexAlphaData) set to the value 1.

Example — Mapping Data to Color or Transparency
This example displays a surface plot of a function of two variables. The color
is mapped to the gradient of the z data.

[x,y] = meshgrid([-2:.2:2]);
z = x.*exp(-x.^2-y.^2);
surf(x,y,z,gradient(z)); axis tight

You can map transparency to the gradient of z in a similar way.

surf(x,y,z,'FaceAlpha','flat',...
'AlphaDataMapping','scaled',...
'AlphaData',gradient(z),...
'FaceColor','blue');

axis tight

4-10

file:///B:/matlab/doc/src/toolbox/matlab/ref/axes_props.html%23ALim
file:///B:/matlab/doc/src/toolbox/matlab/ref/surface_props.html%23AlphaData
file:///B:/matlab/doc/src/toolbox/matlab/ref/patch_props.html%23FaceVertexAlphaData

Mapping Data to Transparency — Alpha Data

4-11

4 Transparency

Selecting an Alphamap

In this section...

“What Is an Alphamap?” on page 4-12

“Example — Modifying the Alphamap” on page 4-14

What Is an Alphamap?
An alphamap is simply an array of values ranging from 0 to 1. The size of the
array can be either m-by-1 or 1-by-m.

The default alphamap contains 64 values ranging linearly from 0 to 1, as you
can see in the following plot.

plot(get(gcf,'Alphamap'))

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Default Alphamap

This alphamap displays the lowest alpha data values as completely
transparent and the highest alpha data values as opaque.

The alphamap function creates some useful predefined alphamaps and also
enables you to modify existing maps. For example,

4-12

Selecting an Alphamap

plot(alphamap('vup'))

produces the following alphamap.

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

You can shift the values using the increase or decrease options. For example,

alphamap('increase',.4)

adds the value .4 to all values in the current figure’s alphamap. Replotting
the 'vup' alphamap illustrates the change. Note how the values are clamped
to the range [0 1].

plot(get(gcf,'Alphamap'))

4-13

4 Transparency

0 10 20 30 40 50 60 70
0.4

0.5

0.6

0.7

0.8

0.9

1

Example — Modifying the Alphamap
This example uses slice planes to examine volume data. The slice planes use
the color data for alpha data and employ a rampdown alphamap (the values
range from 1 to 0):

1 Create the volume data by evaluating a function of three variables.

[x,y,z] = meshgrid(-1.25:.1:-.25,-2:.2:2,-2:.1:2);
v = x.*exp(-x.^2-y.^2-z.^2);

2 Create the slice planes, set the alpha data equal to the color data, and
specify interpolated FaceAlpha.

h = slice(x,y,z,v,[-1 -.75 -.5],[],[0]);
alpha('color')
set(h,'EdgeColor','none','FaceColor','interp',...
'FaceAlpha','interp')

3 Install the rampdown alphamap and increase each value in the alphamap
by .1 to achieve the desired degree of transparency. Specify the hsv
colormap.

alphamap('rampdown')

4-14

file:///B:/matlab/doc/src/toolbox/matlab/ref/slice.html

Selecting an Alphamap

alphamap('increase',.1)
colormap(hsv)

This alphamap causes the smallest values of the function (around zero) to be
displayed with the least transparency and the greatest values to display with
the most transparency. This enables you to see through the slice planes, while
at the same time preserving the data around zero.

4-15

4 Transparency

4-16

5

Creating 3-D Models with
Patches

Introduction to Patch Objects (p. 5-2) Overview of what a patch object is
and how to define one

Multifaceted Patches (p. 5-7) Shows how to define a 3-D patch
object using both x-, y-, and
z-coordinate and faces/vertices data,
and illustrates flat and interpolated
face coloring

Modifying Data on Existing Patch
Objects (p. 5-11)

Read this section before you attempt
to modify the data of a patch object

Specifying Patch Coloring (p. 5-14) How to specify patch coloring using
various patch properties

Interpreting Indexed and Truecolor
Data (p. 5-18)

Specifying color data that uses
colormaps or defines explicit colors

5 Creating 3-D Models with Patches

Introduction to Patch Objects

In this section...

“What Are Patch Objects?” on page 5-2

“Behavior of the patch Function” on page 5-3

“Creating a Single Polygon” on page 5-4

What Are Patch Objects?
A patch graphics object is composed of one or more polygons that may or may
not be connected. Patches are useful for modeling real-world objects such as
airplanes or automobiles, and for drawing 2- or 3-D polygons of arbitrary
shape.

In contrast, surface objects are rectangular grids of quadrilaterals and
are better suited for displaying planar topographies such as the values of
mathematical functions of two variables, the contours of data in a rectangular
plane, or parameterized surfaces such as spheres.

A number of MATLAB® functions create patch objects — fill, fill3,
isosurface, isocaps, some of the contour functions, and patch. This section
concentrates on use of the patch function.

You define a patch by specifying the coordinates of its vertices and some form
of color data. Patches support a variety of coloring options that are useful for
visualizing data superimposed on geometric shapes.

There are two ways to specify a patch:

• By specifying the coordinates of the vertices of each polygon, which are
connected to form the patch

• By specifying the coordinates of each unique vertex and a matrix that
specifies how to connect these vertices to form the faces

The second technique is preferred for multifaceted patches because it
generally requires less data to define the patch; vertices shared by more than

5-2

Introduction to Patch Objects

one face need be defined only once. This section provides examples of both
techniques.

Behavior of the patch Function
There are two forms of the patch function – high-level syntax and low-level
syntax. The behavior of the patch function differs somewhat depending on
which syntax you use.

High-Level Syntax
When you use the high-level syntax, MATLAB automatically determines how
to color each face based on the color data you specify. The high-level syntax
enables you to omit the property names for the x-, y-, and z-coordinates and
the color data, as long as you specify these arguments in the correct order.

patch(x-coordinates,y-coordinates,z-coordinates,colordata)

However, you must specify color data so MATLAB can determine what type of
coloring to use. If you do not specify color data, MATLAB returns an error.

patch(sin(t),cos(t))
??? Error using ==> patch
Not enough input arguments.

Low-Level Syntax
The low-level syntax accepts only property name/property value pairs as
arguments and does not automatically color the faces unless you also change
the value of the FaceColor property. For example, the statement

patch('XData',sin(t),'YData',cos(t)) % Low-level syntax

draws a patch with white face color because the factory default value for the
FaceColor property is the color white.

get(0,'FactoryPatchFaceColor')
ans =

1 1 1

5-3

file:///B:/matlab/doc/src/toolbox/matlab/ref/patch_props.html%23FaceColor

5 Creating 3-D Models with Patches

See the list of patch properties in the MATLAB Function Reference and the
get command for information on how to obtain the factory and user default
values for properties.

Interpreting the Color Argument
When you use the low-level syntax, MATLAB interprets the third (or fourth if
there are z-coordinates) argument as color data. If you intend to define a patch
with x-, y-, and z-coordinates, but leave out the color, MATLAB interprets the
z-coordinates as color data, and then draws a 2-D patch. For example,

h = patch(sin(t),cos(t),1:length(t))

draws a patch with all vertices at z = 0, colored by interpolating the vertex
colors (since there is one color for each vertex), whereas

h = patch(sin(t),cos(t),1:length(t),'y')

draws a patch with vertices at increasing values of z, colored yellow.

“Specifying Patch Coloring” on page 5-14 provides more information on
options for coloring patches.

Creating a Single Polygon
A polygon is simply a patch with one face. To create a polygon, specify the
coordinates of the vertices and color data with a statement of the form

patch(x-coordinates,y-coordinates,[z-coordinates],colordata)

For example, these statements display a 10-sided polygon with a yellow face
enclosed by a black edge. The axis equal command produces a correctly
proportioned polygon.

t = 0:pi/5:2*pi;
patch(sin(t),cos(t),'y')
axis equal

5-4

file:///B:/matlab/doc/src/toolbox/matlab/ref/patch_props.html

Introduction to Patch Objects

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

The first and last vertices need not coincide; MATLAB automatically closes
each polygonal face of the patch. In fact, it is generally better to define each
vertex only once, particularly if you are using interpolated face coloring.

Interpolated Face Colors
You can control many aspects of the patch coloring. For example, instead of
specifying a single color, you can provide a range of numerical values that map
the color at each vertex to a color in the figure colormap.

a = t(1:length(t)-1); %remove redundant vertex definition
patch(sin(a),cos(a),1:length(a),'FaceColor','interp')
colormap cool;
axis equal

5-5

5 Creating 3-D Models with Patches

MATLAB now interpolates the colors across the face of the patch. You can
color the edges of the patch the same way, by setting the edge colors to be
interpolated. The command is

patch(sin(t),cos(t),1:length(t),'EdgeColor','interp')

“Specifying Patch Coloring” on page 5-14 provides more information on
options for coloring patches.

5-6

Multifaceted Patches

Multifaceted Patches

Example — Defining a Cube
A cube is defined by eight vertices that form six sides. This illustration shows
the x-, y-, and z-coordinates of the vertices defining a cube in which the sides
are one unit in length.

If you specify the x-, y-, and z-coordinate arguments as vectors, they render
as a single polygon with points connected in sequence. If the arguments
are matrices, MATLAB® draws one polygon per column, producing a single
patch with multiple faces. These faces need not be connected and can be
self-intersecting.

Alternatively, you can specify the coordinates of each unique vertex and the
order in which to connect them to form the faces. The examples in this section
illustrate both techniques.

Specifying X, Y, and Z Coordinates
Each of the six faces has four vertices. Because you do not need to close each
polygon (i.e., the first and last vertices do not need to be the same), you can
define this cube using a 4-by-6 matrix for each of the x-, y-, and z-coordinates.

5-7

5 Creating 3-D Models with Patches

Each column of the matrices specifies a different face. Note that while there
are only eight vertices, you must specify 24 vertices to define all six faces.
Since each face shares vertices with four other faces, you can define the patch
more efficiently by defining each vertex only once and then specifying the
order in which to connect these vertices to form each face. The patch Vertices
and Faces properties define patches in just this way.

Specifying Faces and Vertices
These matrices specify the cube using Vertices and Faces.

Using the vertices/faces technique can save a considerable amount of
computer memory when patches contain a large number of faces. This
technique requires the formal patch function syntax, which entails assigning
values to the Vertices and Faces properties explicitly. For example,

5-8

Multifaceted Patches

patch('Vertices',vertex_matrix,'Faces',faces_matrix)

Because the high-level syntax does not automatically assign face or edge
colors, you must set the appropriate properties to produce patches with colors
other than the default white face color and black edge color.

Flat Face Color
Flat face color is the result of specifying one color per face. For example, using
the vertices/faces technique and the FaceVertexCData property to define
color, this statement specifies one color per face and sets the FaceColor
property to flat.

patch('Vertices',vertex_matrix,'Faces',faces_matrix,...
'FaceVertexCData',hsv(6),'FaceColor','flat')

Because truecolor specified with the FaceVertexCData property has the
same format as a MATLAB colormap (i.e., an n-by-3 array of RGB values),
this example uses the hsv colormap to generate the six colors required for
flat shading.

Interpolated Face Color
Interpolated face color means the vertex colors of each face define a transition
of color from one vertex to the next. To interpolate the colors between vertices,
you must specify a color for each vertex and set the FaceColor property to
interp.

patch('Vertices',vertex_matrix,'Faces',faces_matrix,...
'FaceVertexCData',hsv(8),'FaceColor','interp')

Changing to the standard 3-D view and making the axis square,

view(3); axis square

produces a cube with each face colored by interpolating the vertex colors.

To specify the same coloring using the x, y, z, c technique, c must be an
m-by-n-by-3 array, where the dimensions of x, y, and z are m-by-n.

5-9

5 Creating 3-D Models with Patches

This diagram shows the correspondence between the FaceVertexCData and
CData properties.

“Specifying Patch Coloring” on page 5-14 discusses coloring techniques in
more detail.

5-10

Modifying Data on Existing Patch Objects

Modifying Data on Existing Patch Objects

In this section...

“Specifying Patch Data” on page 5-11

“Handling Mixed Data Specification” on page 5-11

Specifying Patch Data
In general, if you define a patch with Faces and Vertices data and then want
to modify its data, you should continue to use these same properties. Do not
switch modes and modify the XData, YData, ZData, or CData properties.

Handling Mixed Data Specification
When you create a patch specified with Faces and Vertices data, arrays of
data for the XData, YData, ZData and CData properties are constructed when
you query them. However, these arrays contain only enough data to define the
same number of vertices as there are referred to in the Faces property. If the
number of vertices in the Vertices property is greater than the number of
vertices used by the Faces property, then MATLAB® plotting functions cannot
generate complete x, y, and z data from the faces and vertex data.

While you should not use mixed data specification when defining patch objects
directly, you might need to modify patch data when using functions that
themselves create patch objects. For example, the bar function creates patch
objects to implement the bars in a graph.

Note The barseries YData property enables you to modify the bar graph
without the need to use the following steps. See the bar function for more
information on working with bar graphs.

The function uses y-data values to determine the height of each bar, but
creates each bar as the face of a patch specified by faces and vertices. For
example,

rand('state',4)

5-11

5 Creating 3-D Models with Patches

h = bar(rand(10,1)); % y data for each bar
p = get(h,'children'); % get the handle of the patch
cl = get(gca,'CLim');

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Before you can change the patch YData property, you must switch the patch
to x, y, and z data as follows:

xd = get(p,'XData');
yd = get(p,'YData');
zd = get(p,'ZData');
cd = get(p,'CData');
set(p,'XData',xd,'YData',yd,'ZData',zd,'CData',cd);
set(gca,'CLim',cl)

This setting of the XData, YData, ZData and CData properties causes the patch
function to match the faces and vertex data with x, y, and z data. Note that
because there is a change in the patch data, the color limits change, so you
must use the original values for the axes CLim property.

You can now modify the y data values to change your graph. For example,
the value of bar at x = 10 is 0.0122:

5-12

Modifying Data on Existing Patch Objects

yd(:,10)
ans =

0
0.0122
0.0122

0

You can change this bar by changes rows 2 and 3:

yd(2:3,10) = [.65 .65];

Now reset the patch YData property:

set(p,'YData',yd)

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Another reason you might want to modify face-vertex data for bar graphs
or other objects is to modify their CData to customize how they are colored.
Techniques for doing this for 2–D and 3–D bar graphs are explained in
“Coloring 2-D Bars According to Height” and “Coloring 3-D Bars According to
Height” in the MATLAB Graphics documentation.

5-13

5 Creating 3-D Models with Patches

Specifying Patch Coloring

In this section...

“Patch Color Properties” on page 5-14

“Patch Edge Coloring” on page 5-15

“Coloring Edges with Shared Vertices” on page 5-17

Patch Color Properties
Patch coloring is defined differently from surface object coloring in that
patches do not automatically generate color data based on the value of the
z-coordinate at each vertex. You must explicitly specify patch coloring if you
do not want the default white face color and black edge color.

You can specify patch face coloring by defining

• A single color for all faces

• One color for each face, which is used for flat coloring

• One color for each vertex, which is used for interpolated coloring

Specify the face color using either the CData property, if you are using x-, y-,
and z-coordinates, or the FaceVertexCData property, if you are specifying
vertices and faces.

This table summarizes the patch properties that control color (exclusive of
those used when light sources are present).

Property Purpose

CData Specify single, per face, or per vertex colors in
conjunction with x, y, and z data

CDataMapping Specifies whether color data is scaled or used
directly as indices into the figure colormap

FaceVertexCData Specify single, per face, or per vertex colors in
conjunction with faces and vertices data

5-14

file:///B:/matlab/doc/src/toolbox/matlab/ref/patch_props.html%23CData
file:///B:/matlab/doc/src/toolbox/matlab/ref/patch_props.html%23FaceVertexCData
file:///B:/matlab/doc/src/toolbox/matlab/ref/patch_props.html%23CData
file:///B:/matlab/doc/src/toolbox/matlab/ref/patch_props.html%23CDataMapping
file:///B:/matlab/doc/src/toolbox/matlab/ref/patch_props.html%23FaceVertexCData

Specifying Patch Coloring

Property Purpose

EdgeColor Specifies whether edges are invisible, a single
color, a flat color determined by vertex colors, or
interpolated colors determined by vertex colors

FaceColor Specifies whether faces are invisible, a single
color, a flat color determined by vertex colors, or
interpolated colors determined by vertex colors

MarkerEdgeColor Specifies the color of the marker, or the edge color
for filled markers

MarkerFaceColor Specifies the fill color for markers that are closed
shapes

Patch Edge Coloring
Each patch face has a bounding edge, which you can color as

• A single color for all edges

• A flat color defined by the color of the vertex that precedes the edge

• Interpolated colors determined by the two vertices that bound the edge

Note that patch edge colors can be flat or interpolated only when you specify a
color for each vertex. Flat edge coloring uses the color of the vertex preceding
the edge to determine the color of the edge. The order in which you specify the
vertices establishes which vertex colors a particular edge.

The following examples illustrate patch edge coloring:

•

• “Coloring Edges with Shared Vertices” on page 5-17

Example — Specifying Flat Edge and Face Coloring
These statements create a square patch.

v = [0 0 0;1 0 0;1 1 0;0 1 0];
f = [1 2 3 4];

5-15

file:///B:/matlab/doc/src/toolbox/matlab/ref/patch_props.html%23EdgeColor
file:///B:/matlab/doc/src/toolbox/matlab/ref/patch_props.html%23FaceColor
file:///B:/matlab/doc/src/toolbox/matlab/ref/patch_props.html%23MarkerEdgeColor
file:///B:/matlab/doc/src/toolbox/matlab/ref/patch_props.html%23MarkerFaceColor

5 Creating 3-D Models with Patches

fvc = [1 0 0;0 1 0;1 0 1;1 1 0];
patch('Vertices',v,'Faces',f,'FaceVertexCData',fvc,...

'FaceColor','flat','EdgeColor','flat',...
'Marker','o','MarkerFaceColor','flat')

The Faces property value, [1 2 3 4], determines the order in which
MATLAB® connects the vertices. In this case, the order is red, green, magenta,
and yellow. If you change this order, the results can be quite different. For
example, specifying the Faces property as

f = [4 3 2 1];

changes the order to yellow, magenta, green, and red. Note that changing the
order not only changes the color of the edges, but also the color of the face,
which is the color of the first vertex specified.

5-16

file:///B:/matlab/doc/src/toolbox/matlab/ref/patch_props.html%23Faces

Specifying Patch Coloring

Coloring Edges with Shared Vertices
Each patch face is bound by edges, which are line segments that connect the
vertices. When patches have multiple faces that share vertices, some of the
edges might overlap. In such cases, the edges of the most recently drawn
face overlie previously drawn edges.

For example, this illustration shows a patch with four faces and flat colored
edges (FaceColor set to none, EdgeColor set to flat).

The arrows indicate the order in which each edge is drawn in the first, second,
third, and fourth face. The color at each vertex determines the color of the
edge that follows it. Notice how the second edge in the first face would be
green except that the second face drew its fourth edge from the magenta
vertex. You can see similar effects in all shared edges.

For EdgeColor set to interp, MATLAB interpolates colors between adjacent
vertices. In this case, the order in which you specify the vertices does not
affect the edge color.

5-17

5 Creating 3-D Models with Patches

Interpreting Indexed and Truecolor Data

In this section...

“Introduction” on page 5-18

“Indexed Color Data” on page 5-18

“Truecolor Patches” on page 5-21

“Interpolating in Indexed Color Versus Truecolor” on page 5-22

Introduction
Patch color data is interpreted in either of two ways:

• Indexed Color Data — Numerical values that are mapped to colors defined
in the figure colormap

• Truecolor Data — RGB triples that define colors explicitly and do not make
use of the figure colormap

The dimensions of the color data (CData or FaceVertexCData) determine how
such data is interpreted. If you specify only one numeric value per patch, per
face, or per vertex, the data is regarded as indexed. If there are three numeric
values per patch, face, or vertex, the values are interpreted as RGB triplets.

Indexed Color Data
Indexed color data can either be interpreted as values to scale before mapping
to the colormap, or directly as indices into the colormap. You control the
interpretation by setting the CDataMapping property. The default is to scale
the data.

Scaled Color
By default, the color data is scaled so that the minimum value maps to
the first color in the colormap, the maximum value maps to the last color
in the colormap, and values in between are linearly transformed to span
the colormap. This enables you to use colormaps of different sizes without
changing your data and to use data in any range of values without changing
the colormap.

5-18

file:///B:/matlab/doc/src/toolbox/matlab/ref/patch_props.html%23CData
file:///B:/matlab/doc/src/toolbox/matlab/ref/patch_props.html%23FaceVertexCData
file:///B:/matlab/doc/src/toolbox/matlab/ref/patch_props.html%23CDataMapping

Interpreting Indexed and Truecolor Data

For example, the following patch has eight triangular faces with a total of
24 (nonunique) vertices. The color data are integers that range from one to
24, but could be any values.

The variable c contains the color data. It is a 3-by-8 matrix, with each column
specifying the colors for the three vertices of each face.

c =
1 4 7 10 13 16 19 22
2 5 8 11 14 17 20 23
3 6 9 12 15 18 21 24

The color bar (colorbar) on the right side of the patch illustrates the
colormap used and indicates with the vertical axis which color is mapped
to the respective data value.

2

4

6

8

10

12

14

16

18

20

22

24

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

CDataMapping = scaled

You can alter the mapping of color data to colormap entry using the caxis
command. This command uses a two-element vector [cmin cmax] to specify
what data values map to the beginning and end of the colormap, thereby
shifting the color mapping.

5-19

5 Creating 3-D Models with Patches

By default, cmin is set to the minimum value and cmax to the maximum value
of the color data of all graphics objects within the axes. However, you can set
these limits to span any range of values and thereby shift the color mapping.
See Calculating Color Limits in "Axes Properties" in the Using MATLAB®

Graphics documentation for more information.

The color data does not need to be a sequential list of integers; it can be any
matrix with dimensions matching the coordinate data. For example,

patch(x,y,z,rand(size(z)))

Direct Color
If you set the patch CDataMapping property to direct,

set(patch_handle,'CDataMapping','direct')

MATLAB graphic software interprets each color data value as a direct index
into the colormap. That is, a value of 1 maps to the first color, a value of 2
maps to the second color, and so on.

The patch from the previous example would then use only the first 24 colors
in the colormap.

5-20

Interpreting Indexed and Truecolor Data

10

20

30

40

50

60

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

CDataMapping = direct

This example uses integer color data. However, if the values are not integers,
they are converted according to these rules:

• If value is < 1, it maps to the first color in the colormap.

• If value is not an integer, it is rounded to the nearest integer toward zero.

• If value > length(colormap), it maps to the last color in the colormap.

Unscaled color data is more commonly used for images where there is
typically a colormap associated with a particular image.

Truecolor Patches
Truecolor is a means to specify a color explicitly with RGB values rather than
pointing to an entry in the figure colormap. Truecolor generally provides a
greater range of colors than can be defined in a colormap.

Using truecolor eliminates the mapping of data to colormap entries. On the
other hand, you cannot change the coloring of the patch without redefining
the color data (as opposed to just changing the colormap).

5-21

5 Creating 3-D Models with Patches

Interpolating in Indexed Color Versus Truecolor
When you specify interpolated face coloring, the color of each face is
determined by interpolating the vertex colors. The method of interpolation
depends on whether you specified truecolor data or indexed color data.

With truecolor data, the numeric RGB values defined for the vertices are
interpolated. This generally produces a smooth variation of color across the
face. In contrast, indexed color interpolation uses only colors that are defined
in the colormap. With certain colormaps, the results can be quite different.

To illustrate this difference, these two patches are defined with the same
vertex colors. Circular markers indicate the yellow, red, and blue vertex colors.

The patch on the left uses indexed colors obtained from the six-element
colormap shown next to it. The color data maps the vertex colors to the
colormap elements indicated in the picture. With this colormap, interpolating
from the cyan vertex to the blue vertex can include only the colors green, red,
yellow, and magenta, hence the banding.

Interpolation in RGB space makes no use of the colormap. It is simply
the gradual transition from one numeric value to another. For example,

5-22

Interpreting Indexed and Truecolor Data

interpolating from the cyan vertex to the blue vertex follows a progression
similar to these values.

0 1 1, 0 0.9 1, 0 0.8 1, ... 0 0.2 1, 0 0.1 1, 0 0 1

In reality each pixel would be a different color so the incremental change
would be much smaller than illustrated here.

5-23

5 Creating 3-D Models with Patches

5-24

6

Volume Visualization
Techniques

Overview of Volume Visualization
(p. 6-3)

Volume data visualization with
MATLAB® Graphics, including
examples of available techniques

Techniques for Visualizing Scalar
Volume Data (p. 6-7)

Techniques available for visualizing
scalar volume data, such as MRI
slices

Exploring Volumes with Slice Planes
(p. 6-14)

Using slice planes to scan the
interior of scalar volumes

Connecting Equal Values with
Isosurfaces (p. 6-19)

Using isosurfaces to illustrate scalar
fluid-flow data

Isocaps Add Context to
Visualizations (p. 6-21)

Using isocaps to improve the shape
definition of isosurface plots

Visualizing Vector Volume Data
(p. 6-26)

Techniques for visualizing vector
volume data, including scalar
techniques, determining starting
points for stream plots, and plotting
subregions of volumes

Example — Stream Line Plots of
Vector Data (p. 6-32)

Using stream lines, slice planes, and
contour lines in one graph

Example — Displaying Curl with
Stream Ribbons (p. 6-35)

Example using stream ribbon plots
to display the curl of a vector field

6 Volume Visualization Techniques

Example — Displaying Divergence
with Stream Tubes (p. 6-38)

Example using stream tube plots to
display the divergence of a vector
field. Slice planes and contour lines
enhance the visualization.

Example — Creating Stream Particle
Animations (p. 6-42)

Example using stream lines and
stream particles to create an
animation illustrating wind currents

Example — Vector Field Displayed
with Cone Plots (p. 6-45)

Example using cone plots,
isosurfaces, lighting, and camera
placement to visualize a vector field

6-2

Overview of Volume Visualization

Overview of Volume Visualization

In this section...

“Examples of Volume Data” on page 6-3

“Selecting Visualization Techniques” on page 6-4

“Steps to Create a Volume Visualization” on page 6-4

“Volume Visualization Functions” on page 6-5

Examples of Volume Data
Volume visualization is the creation of graphical representations of data
sets that are defined on three-dimensional grids. Volume data sets are
characterized by multidimensional arrays of scalar or vector data. These data
are typically defined on lattice structures representing values sampled in 3-D
space. There are two basic types of volume data:

• Scalar volume data contains single values for each point.

• Vector volume data contains two or three values for each point, defining
the components of a vector.

An example of scalar volume data is that produced by the flow M-file. The
flow data represents the speed profile of a submerged jet within an infinite
tank. Typing

[x,y,z,v] = flow;

produces four 3-D arrays. The x, y, and z arrays specify the coordinates of the
scalar values in the array v.

The wind data set is an example of vector volume data that represents air
currents over North America. You can load this data in the MATLAB®

workspace with the command

load wind

6-3

6 Volume Visualization Techniques

This data set comprises six 3-D arrays: x, y, and z are the coordinate data
for the arrays u, v, and w, which are the vector components for each point in
the volume.

Selecting Visualization Techniques
The techniques you select to visualize volume data depend on what type of
data you have and what you want to learn. In general,

• Scalar data is best viewed with isosurfaces, slice planes, and contour slices.

• Vector data represents both a magnitude and direction at each point, which
is best displayed by stream lines (particles, ribbons, and tubes), cone plots,
and arrow plots. Most visualizations, however, employ a combination of
techniques to best reveal the content of the data.

The material in these sections describes how to apply a variety of techniques
to typical volume data.

Steps to Create a Volume Visualization
Creating an effective visualization requires a number of steps to compose the
final scene. These steps fall into four basic categories:

1 Determine the characteristics of your data. Graphing volume data usually
requires knowledge of the range of both the coordinates and the data values.

2 Select an appropriate plotting routine. The information in this section
helps you select the right methods.

3 Define the view. The information conveyed by a complex three-dimensional
graph can be greatly enhanced through careful composition of the scene.
Viewing techniques include adjusting camera position, specifying aspect
ratio and project type, zooming in or out, and so on.

4 Add lighting and specify coloring. Lighting is an effective means to
enhance the visibility of surface shape and to provide a three-dimensional
perspective to volume graphs. Color can convey data values, both constant
and varying.

6-4

Overview of Volume Visualization

Volume Visualization Functions
MATLAB functions enable you to apply a variety of volume visualization
techniques. The following tables group these functions into two categories
based on the type of data (scalar or vector) that each is designed to work with.
The reference page for each function provides examples of the intended use.

Functions for Scalar Data

Function Purpose

contourslice Draw contours in volume slice planes

isocaps Compute isosurface end-cap geometry

isocolors Compute the colors of isosurface vertices

isonormals Compute normals of isosurface vertices

isosurface Extract isosurface data from volume data

patch Create a patch (multipolygon) graphics object

reducepatch Reduce the number of patch faces

reducevolume Reduce the number of elements in a volume data set

shrinkfaces Reduce the size of each patch face

slice Draw slice planes in volume

smooth3 Smooth 3-D data

surf2patch Convert surface data to patch data

subvolume Extract subset of volume data set

Functions for Vector Data

Function Purpose

coneplot Plot velocity vectors as cones in 3-D
vector fields

curl Compute the curl and angular
velocity of a 3-D vector field

6-5

6 Volume Visualization Techniques

Function Purpose

divergence Compute the divergence of a 3-D
vector field

interpstreamspeed Interpolate streamline vertices from
vector-field magnitudes

streamline Draw stream lines from 2-D or 3-D
vector data

streamparticles Draw stream particles from vector
volume data

streamribbon Draw stream ribbons from vector
volume data

streamslice Draw well-spaced stream lines from
vector volume data

streamtube Draw stream tubes from vector
volume data

stream2 Compute 2-D stream line data

stream3 Compute 3-D stream line data

volumebounds Return coordinate and color limits
for volume (scalar and vector)

6-6

Techniques for Visualizing Scalar Volume Data

Techniques for Visualizing Scalar Volume Data

In this section...

“What Is Scalar Volume Data?” on page 6-7

“Example — Ways to Display MRI Data” on page 6-7

What Is Scalar Volume Data?
Typical scalar volume data is composed of a 3-D array of data and three
coordinate arrays of the same dimensions. The coordinate arrays specify the
x-, y-, and z-coordinates for each data point.

The units of the coordinates depend on the type of data. For example, flow
data might have coordinate units of inches and data units of psi.

A number of MATLAB® functions are useful for visualizing scalar data:

• Slice planes provide a way to explore the distribution of data values within
the volume by mapping values to colors. You can orient slice planes at
arbitrary angles, as well as use nonplanar slices. (For illustrations of how
to use slice planes, see slice, a volume slicing example, and slice planes
used to show context.) You can specify the data used to color isosurfaces,
enabling you to display different information in color and surface shape
(see isocolors).

• Contour slices are contour plots drawn at specific coordinates within the
volume. Contour plots enable you to see where in a given plane the data
values are equal. See contourslice for an example

• Isosurfaces are surfaces constructed by using points of equal value as the
vertices of patch graphics objects.

Example — Ways to Display MRI Data

Changing the Data Format (p. 6-8)

Displaying Images of MRI Data
(p. 6-9)

6-7

6 Volume Visualization Techniques

Displaying a 2-D Contour Slice
(p. 6-9)

Displaying 3-D Contour Slices
(p. 6-10)

Displaying an Isosurface (p. 6-11)

Adding an Isocap to Show a Cutaway
Surface (p. 6-11)

Defining the View (p. 6-12)

Add Lighting (p. 6-12)

An example of scalar data includes Magnetic Resonance Imaging (MRI) data.
This data typically contains a number of slice planes taken through a volume,
such as the human body. MATLAB includes an MRI data set that contains
27 image slices of a human head. This example illustrate the following
techniques applied to MRI data:

• A series of 2-D images representing slices through the head

• 2-D and 3-D contour slices taken at arbitrary locations within the data

• An isosurface with isocaps showing a cross section of the interior

Changing the Data Format
The MRI data, D, is stored as a 128-by-128-by-1-by-27 array. The third array
dimension is used typically for the image color data. However, since these are
indexed images (a colormap, map, is also loaded) there is no information in
the third dimension, which you can remove using the squeeze command. The
result is a 128-by-128-by-27 array.

The first step is to load the data and transform the data array from 4-D to 3-D.

load mri
D = squeeze(D);

6-8

Techniques for Visualizing Scalar Volume Data

Displaying Images of MRI Data
To display one of the MRI images, use the image command, indexing into the
data array to obtain the eighth image. Then adjust axis scaling, and install
the MRI colormap, which was loaded along with the data.

image_num = 8;
image(D(:,:,image_num))
axis image
colormap(map)

20 40 60 80 100 120

20

40

60

80

100

120

Save the x- and y-axis limits for use in the next part of the example.

x = xlim;
y = ylim;

Displaying a 2-D Contour Slice
You can treat this MRI data as a volume because it is a collection of slices
taken progressively through the 3-D object. Use contourslice to display a
contour plot of a slice of the volume. To create a contour plot with the same

6-9

6 Volume Visualization Techniques

orientation and size as the image created in the first part of this example,
adjust the y-axis direction (axis), set the limits (xlim, ylim), and set the
data aspect ratio (daspect).

contourslice(D,[],[],image_num)
axis ij
xlim(x)
ylim(y)
daspect([1,1,1])
colormap('default')

This contour plot uses the figure colormap to map color to contour value.

20 40 60 80 100 120

20

40

60

80

100

120

Displaying 3-D Contour Slices
Unlike images, which are 2-D objects, contour slices are 3-D objects that you
can display in any orientation. For example, you can display four contour
slices in a 3-D view. To improve the visibility of the contour line, increase the
LineWidth to 2 points (one point equals 1/72 of an inch).

phandles = contourslice(D,[],[],[1,12,19,27],8);

6-10

file:///B:/matlab/doc/src/toolbox/matlab/ref/patch_props.html%23LineWidth

Techniques for Visualizing Scalar Volume Data

view(3); axis tight
set(phandles,'LineWidth',2)

Displaying an Isosurface
You can use isosurfaces to display the overall structure of a volume. When
combined with isocaps, this technique can reveal information about data on
the interior of the isosurface.

First, smooth the data with smooth3; then use isosurface to calculate the
isodata. Use patch to display this data as a graphics object.

Ds = smooth3(D);
hiso = patch(isosurface(Ds,5),...
'FaceColor',[1,.75,.65],...
'EdgeColor','none');

Adding an Isocap to Show a Cutaway Surface
Use isocaps to calculate the data for another patch that is displayed at the
same isovalue (5) as the surface. Use the unsmoothed data (D) to show details
of the interior. You can see this as the sliced-away top of the head.

6-11

6 Volume Visualization Techniques

hcap = patch(isocaps(D,5),...
'FaceColor','interp',...
'EdgeColor','none');

colormap(map)

Defining the View
Define the view and set the aspect ratio (view, axis, daspect).

view(45,30)
axis tight
daspect([1,1,.4])

Add Lighting
Add lighting and recalculate the surface normals based on the gradient
of the volume data, which produces smoother lighting (camlight,
lighting, isonormals). Increase the AmbientStrength property of the
isocap to brighten the coloring without affecting the isosurface. Set the
SpecularColorReflectance of the isosurface to make the color of the
specular reflected light closer to the color of the isosurface; then set the
SpecularExponent to reduce the size of the specular spot.

lightangle(45,30);
set(gcf,'Renderer','zbuffer'); lighting phong
isonormals(Ds,hiso)
set(hcap,'AmbientStrength',.6)
set(hiso,'SpecularColorReflectance',0,'SpecularExponent',50)

6-12

file:///B:/matlab/doc/src/toolbox/matlab/ref/patch_props.html%23AmbientStrength
file:///B:/matlab/doc/src/toolbox/matlab/ref/patch_props.html%23SpecularColorReflectance
file:///B:/matlab/doc/src/toolbox/matlab/ref/surface_props.html%23SpecularExponent

Techniques for Visualizing Scalar Volume Data

Example of an Isocap

The isocap uses interpolated face coloring, which means the figure colormap
determines the coloring of the patch. This example uses the colormap supplied
with the data.

To display isocaps at other data values, try changing the isosurface value or
use the subvolume command. See the isocaps and subvolume reference
pages for examples.

6-13

6 Volume Visualization Techniques

Exploring Volumes with Slice Planes

In this section...

“Example — Slicing Fluid Flow Data” on page 6-14

“Modifying the Color Mapping” on page 6-17

Example — Slicing Fluid Flow Data
A slice plane (which does not have to be planar) is a surface that takes on
coloring based on the values of the volume data in the region where the slice
is positioned. Slice planes are useful for probing volume data sets to discover
where interesting regions exist, which you can then visualize with other types
of graphs (see the slice example). Slice planes are also useful for adding a
visual context to the bound of the volume when other graphing methods are
also used (see coneplot and “Example — Stream Line Plots of Vector Data”
on page 6-32 for examples).

Use the slice function to create slice planes. This example slices through a
volume generated by the flow M-file.

1. Investigate the Data
Generate the volume data with the command

[x,y,z,v] = flow;

Determine the range of the volume by finding the minimum and maximum of
the coordinate data.

xmin = min(x(:));
ymin = min(y(:));
zmin = min(z(:));

xmax = max(x(:));
ymax = max(y(:));
zmax = max(z(:));

6-14

file:///B:/matlab/doc/src/toolbox/matlab/ref/slice.html
file:///B:/matlab/doc/src/toolbox/matlab/ref/coneplot.html

Exploring Volumes with Slice Planes

2. Create a Slice Plane at an Angle to the X-Axes
To create a slice plane that does not lie in an axes plane, first define a surface
and rotate it to the desired orientation. This example uses a surface that has
the same x- and y- coordinates as the volume.

hslice = surf(linspace(xmin,xmax,100),...
linspace(ymin,ymax,100),...
zeros(100));

Rotate the surface by -45 degrees about the x-axis and save the surface XData,
YData, and ZData to define the slice plane; then delete the surface.

rotate(hslice,[-1,0,0],-45)
xd = get(hslice,'XData');
yd = get(hslice,'YData');
zd = get(hslice,'ZData');
delete(hslice)

3. Draw the Slice Planes
Draw the rotated slice plane, setting the FaceColor to interp so that it is
colored by the figure colormap, and set the EdgeColor to none. Increase the
DiffuseStrength to .8 to make this plane shine more brightly after adding a
light source.

h = slice(x,y,z,v,xd,yd,zd);
set(h,'FaceColor','interp',...
'EdgeColor','none',...
'DiffuseStrength',.8)

Set hold to on and add three more orthogonal slice planes at xmax, ymax, and
zmin to provide a context for the first plane, which slices through the volume
at an angle.

hold on
hx = slice(x,y,z,v,xmax,[],[]);
set(hx,'FaceColor','interp','EdgeColor','none')

hy = slice(x,y,z,v,[],ymax,[]);
set(hy,'FaceColor','interp','EdgeColor','none')

6-15

file:///B:/matlab/doc/src/toolbox/matlab/ref/surface_props.html%23XData
file:///B:/matlab/doc/src/toolbox/matlab/ref/surface_props.html%23YData
file:///B:/matlab/doc/src/toolbox/matlab/ref/surface_props.html%23ZData
file:///B:/matlab/doc/src/toolbox/matlab/ref/surface_props.html%23FaceColor
file:///B:/matlab/doc/src/toolbox/matlab/ref/surface_props.html%23EdgeColor
file:///B:/matlab/doc/src/toolbox/matlab/ref/surface_props.html%23DiffuseStrength

6 Volume Visualization Techniques

hz = slice(x,y,z,v,[],[],zmin);
set(hz,'FaceColor','interp','EdgeColor','none')

4. Define the View
To display the volume in correct proportions, set the data aspect ratio to
[1,1,1] (daspect). Adjust the axis to fit tightly around the volume (axis)
and turn on the box to provide a sense of a 3-D object. The orientation of the
axes can be selected initially using rotate3d to determine the best view.

Zooming in on the scene provides a larger view of the volume (camzoom).
Selecting a projection type of perspective gives the rectangular solid more
natural proportions than the default orthographic projection (camproj).

daspect([1,1,1])
axis tight
box on
view(-38.5,16)
camzoom(1.4)
camproj perspective

5. Add Lighting and Specify Colors
Adding a light to the scene makes the boundaries between the four slice planes
more obvious because each plane forms a different angle with the light source
(lightangle). Selecting a colormap with only 24 colors (the default is 64)
creates visible gradations that help indicate the variation within the volume.

lightangle(-45,45)
colormap (jet(24))
set(gcf,'Renderer','zbuffer')

6-16

Exploring Volumes with Slice Planes

The “Modifying the Color Mapping” on page 6-17 section shows how to modify
how the data is mapped to color.

Modifying the Color Mapping
The current colormap determines the coloring of the slice planes. This enables
you to change the slice plane coloring by

• Changing the colormap

• Changing the mapping of data value to color

Suppose, for example, you are interested in data values only between -5 and
2.5 and would like to use a colormap that mapped lower values to reds and
higher values to blues (that is, the opposite of the default jet colormap).

Customizing the Colormap
The first step is to flip the colormap (colormap, flipud).

colormap (flipud(jet(24)))

6-17

6 Volume Visualization Techniques

Adjusting the Color Limits
Adjusting the color limits enables you to emphasize any particular data
range of interest. Adjust the color limits to range from -5 to 2.4832 so that
any value lower than the value -5 (the original data ranged from -11.5417 to
2.4832) is mapped into the same color. (See caxis and Axis Color Limits
- The CLim Property in Axes Properties in the MATLAB® documentation
for an explanation of color mapping.)

caxis([-5,2.4832])

Adding a color bar provides a key for the data-to-color mapping.

colorbar('horiz')

6-18

Connecting Equal Values with Isosurfaces

Connecting Equal Values with Isosurfaces

Example — Isosurfaces in Fluid Flow Data
Isosurfaces are constructed by creating a surface within the volume that has
the same value at each vertex. Isosurface plots are similar to contour plots
in that they both indicate where values are equal.

Isosurfaces are useful to determine where in a volume a certain threshold
value is reached or to observe the spatial distribution of data by selecting
various isovalues at which to generate a plot. The isovalue must lie within
the range of the volume data.

Create isosurfaces with the isosurface and patch commands.

This example creates isosurfaces in a volume generated by the flow M-file.
Generate the volume data with the command

[x,y,z,v] = flow;

To select the isovalue, determine the range of values in the volume data.

min(v(:))
ans =
-11.5417

max(v(:))
ans =
2.4832

Through exploration, you can select isovalues that reveal useful information
about the data. Once selected, use the isovalue to create the isosurface:

• Use isosurface to generate data that you can pass directly to patch.

• Recalculate the surface normals from the gradient of the volume data to
produce better lighting characteristics (isonormals).

• Set the patch FaceColor to red and the EdgeColor to none to produce a
smoothly lit surface.

• Adjust the view and add lighting (daspect, view, camlight, lighting).

6-19

file:///B:/matlab/doc/src/toolbox/matlab/ref/patch_props.html%23EdgeColor

6 Volume Visualization Techniques

hpatch = patch(isosurface(x,y,z,v,0));
isonormals(x,y,z,v,hpatch)
set(hpatch,'FaceColor','red','EdgeColor','none')
daspect([1,4,4])
view([-65,20])
axis tight
camlight left;
set(gcf,'Renderer','zbuffer'); lighting phong

6-20

Isocaps Add Context to Visualizations

Isocaps Add Context to Visualizations

In this section...

“What Are Isocaps?” on page 6-21

“Other Isocap Applications” on page 6-22

“Defining Isocaps” on page 6-22

“Example — Adding Isocaps to an Isosurface” on page 6-23

What Are Isocaps?
Isocaps are planes that are fitted to the limits of an isosurface to provide a
visual context for the isosurface. Isocaps show a cross-sectional view of the
interior of the isosurface for which the isocap provides an end cap.

The following two pictures illustrate the use of isocaps. The first is an
isosurface without isocaps.

The second picture shows the effect of adding isocaps to the same isosurface.

6-21

6 Volume Visualization Techniques

Other Isocap Applications
Some additional applications of isocaps are shown in the following examples.

• Isocaps show the interior of a cut-away volume.

• Isocaps cap the end of a volume that would otherwise appear empty.

• Isocaps enhance the visibility of the isosurface limits.

Defining Isocaps
Isocaps, like isosurfaces, are created as patch graphics objects. Use the
isocaps command to generate the data to pass to patch. For example,

patch(isocaps(voldata,isoval),...
'FaceColor','interp',...
'EdgeColor','none')

creates isocaps for the scalar volume data voldata at the value isoval. You
should create the isosurface using the same volume data and isovalue to
ensure that the edges of the isocaps fit the isosurface.

Setting the patch FaceColor property to interp results in a coloring that
maps the data values spanned by the isocap to colormap entries. You can also
set other patch properties to control the effects of lighting and coloring on
the isocaps.

6-22

file:///B:/matlab/doc/src/toolbox/matlab/ref/subvolume.html
file:///B:/matlab/doc/src/toolbox/matlab/ref/patch_props.html%23FaceColor
file:///B:/matlab/doc/src/toolbox/matlab/ref/patch_props.html

Isocaps Add Context to Visualizations

Example — Adding Isocaps to an Isosurface
This example illustrates how to set coloring and lighting characteristics when
working with isocaps. There are five basic steps:

• Generate and process your volume data.

• Create the isosurface and isocaps and set patch properties to control the
coloring and lighting.

• Create the isocaps and set properties.

• Specify the view.

• Add lights to the scene.

1. Prepare the Data
This example uses a 3-D array of random (rand) data to define the volume
data. The data is then smoothed (smooth3).

data = rand(12,12,12);
data = smooth3(data,'box',5);

2. Create the Isosurface and Set Properties
Use isosurface and patch to create the isosurface and set coloring and
lighting properties. Reduce the AmbientStrength, SpecularStrength, and
DiffuseStrength of the reflected light to compensate for the brightness of
the two light sources used to provide more uniform lighting.

Recalculate the vertex normals of the isosurface to produce smoother lighting
(isonormals).

isoval = .5;
h = patch(isosurface(data,isoval),...
'FaceColor','blue',...
'EdgeColor','none',...
'AmbientStrength',.2,...
'SpecularStrength',.7,...
'DiffuseStrength',.4);

isonormals(data,h)

6-23

file:///B:/matlab/doc/src/toolbox/matlab/ref/patch_props.html%23AmbientStrength
file:///B:/matlab/doc/src/toolbox/matlab/ref/patch_props.html%23SpecularStrength
file:///B:/matlab/doc/src/toolbox/matlab/ref/patch_props.html%23DiffuseStrength

6 Volume Visualization Techniques

3. Create the Isocaps and Set Properties
Define the isocaps using the same data and isovalue as the isosurface.
Specify interpolated coloring and select a colormap that provides better
contrasting colors with the blue isosurface than those in the default colormap
(colormap).

patch(isocaps(data,isoval),...
'FaceColor','interp',...
'EdgeColor','none')

colormap hsv

4. Define the View
Set the data aspect ratio to [1,1,1] so that the display is in correct
proportions (daspect). Eliminate white space within the axes and set the
view to 3-D (axis tight, view).

daspect([1,1,1])
axis tight
view(3)

5. Add Lighting
To add fairly uniform lighting, but still take advantage of the ability of light
sources to make visible subtle variations in shape, this example uses two
lights, one to the left and one to the right of the camera (camlight). Use
Phong lighting to produce the smoothest variation of color (lighting). Phong
lighting requires the zbuffer renderer.

camlight right
camlight left
set(gcf,'Renderer','zbuffer');
lighting phong

6-24

Isocaps Add Context to Visualizations

6-25

6 Volume Visualization Techniques

Visualizing Vector Volume Data

In this section...

“Lines, Particles, Ribbons, Streams, Tubes, and Cones” on page 6-26

“Using Scalar Techniques with Vector Data” on page 6-27

“Specifying Starting Points for Stream Plots” on page 6-27

“Accessing Subregions of Volume Data” on page 6-30

Lines, Particles, Ribbons, Streams, Tubes, and Cones
Vector volume data contains more information than scalar data because each
coordinate point in the data set has three values associated with it. These
values define a vector that represents both a magnitude and a direction. The
velocity of fluid flow is an example of vector data.

A number of techniques are useful for visualizing vector data:

• Stream lines trace the path that a massless particle immersed in the vector
field would follow.

• Stream particles are markers that trace stream lines and are useful for
creating stream line animations.

• Stream ribbons are similar to stream lines, except that the width of the
ribbons enables them to indicate twist. Stream ribbons are useful to
indicate curl angular velocity.

• Stream tubes are similar to stream lines, but you can also control the
width of the tube. Stream tubes are useful for displaying the divergence
of a vector field.

• Cone plots represent the magnitude and direction of the data at each point
by displaying a conical arrowhead or an arrow.

It is typically the case that these functions best elucidate the data when used
in conjunction with other visualization techniques, such as contours, slice
planes, and isosurfaces. The examples in this section illustrate some of these
techniques.

6-26

Visualizing Vector Volume Data

Using Scalar Techniques with Vector Data
Visualization techniques such as contour slices, slice planes, and isosurfaces
require scalar volume data. You can use these techniques with vector data by
taking the magnitude of the vectors. For example, the wind data set returns
three coordinate arrays and three vector component arrays, u, v, w. In this
case, the magnitude of the velocity vectors equals the wind speed at each
corresponding coordinate point in the volume.

wind_speed = sqrt(u.^2 + v.^2 + w.^2);

The array wind_speed contains scalar values for the volume data. The
usefulness of the information produced by this approach, however, depends on
what physical phenomenon is represented by the magnitude of your vector
data.

Specifying Starting Points for Stream Plots
Stream plots (stream lines, ribbons, tubes, and cones or arrows) illustrate
the flow of a 3-D vector field. The MATLAB® stream-plotting functions
(streamline, streamribbon, streamtube, coneplot, stream2, stream3) all
require you to specify the point at which you want to begin each stream trace.

Determining the Starting Points
Generally, knowledge of your data’s characteristics helps you select the
starting points. Information such as the primary direction of flow and the
range of the data coordinates helps you decide where to evaluate the data.

The streamslice function is useful for exploring your data. For example,
these statements draw a slice through the vector field at a z value midway
in the range.

load wind
zmax = max(z(:)); zmin = min(z(:));
streamslice(x,y,z,u,v,w,[],[],(zmax-zmin)/2)

6-27

6 Volume Visualization Techniques

This stream slice plot indicates that the flow is in the positive x direction and
also enables you to select starting points in both x and y. You could create
similar plots that slice the volume in the x-z plane or the y-z plane to gain
further insight into your data’s range and orientation.

Specifying Arrays of Starting-Point Coordinates
To specify the starting point for one stream line, you need the x-, y-, and
z-coordinates of the point. The meshgrid command provides a convenient way
to create arrays of starting points. For example, you could select the following
starting points from the wind data displayed in the previous stream slice.

[sx,sy,sz] = meshgrid(80,20:10:50,0:5:15);

This statement defines the starting points as all lying on x = 80, y ranging
from 20 to 50, and z ranging from 0 to 15. You can use plot3 to display the
locations.

plot3(sx(:),sy(:),sz(:),'*r');
axis(volumebounds(x,y,z,u,v,w))
grid; box; daspect([2 2 1])

6-28

Visualizing Vector Volume Data

80
90

100
110

120
130

20
30

40
50

0

5

10

15

You do not need to use 3-D arrays, such as those returned by meshgrid, but
the size of each array must be the same, and meshgrid provides a convenient
way to generate arrays when you do not have an equal number of unique
values in each coordinate. You can also define starting-point arrays as column
vectors. For example, meshgrid returns 3-D arrays.

[sx,sy,sz] = meshgrid(80,20:10:50,0:5:15);
whos
Name Size Bytes Class
sx 4x1x4 128 double array
sy 4x1x4 128 double array
sz 4x1x4 128 double array

In addition, you could use 16-by-1 column vectors with the corresponding
elements of the three arrays composing the coordinates of each starting
point. (This is the equivalent of indexing the values returned by meshgrid
as sx(:), sy(:), and sz(:).)

For example, adding the stream lines produces

streamline(x,y,z,u,v,w,sx(:),sy(:),sz(:))

6-29

6 Volume Visualization Techniques

80
90

100
110

120
130

20
30

40
50

0

5

10

15

Accessing Subregions of Volume Data
The subvolume function provides a simple way to access subregions of a
volume data set. subvolume enables you to select regions of interest based on
limits rather than using the colon operator to index into the 3-D arrays that
define volumes. Consider the following two approaches to creating the data
for a subvolume — indexing with the colon operator and using subvolume.

Indexing with the Colon Operator
When you index the arrays, you work with values that specify the elements in
each dimension of the array.

load wind
xsub = x(1:10,20:30,1:7);
ysub = y(1:10,20:30,1:7);
zsub = z(1:10,20:30,1:7);
usub = u(1:10,20:30,1:7);
vsub = v(1:10,20:30,1:7);
wsub = w(1:10,20:30,1:7);

6-30

file:///B:/matlab/doc/src/toolbox/matlab/ref/colon.html

Visualizing Vector Volume Data

Using the subvolume Function
subvolume enables you to use coordinate values that you can read from the
axes. For example,

lims = [100.64 116.67 17.25 28.75 -0.02 6.86];
[xsub,ysub,zsub,usub,vsub,wsub] = subvolume(x,y,z,u,v,w,lims);

You can then use the subvolume data as inputs to any function requiring
vector volume data.

6-31

6 Volume Visualization Techniques

Example — Stream Line Plots of Vector Data

In this section...

“Wind Mapping Data” on page 6-32

“1. Determine the Range of the Coordinates” on page 6-32

“2. Add Slice Planes for Visual Context” on page 6-32

“3. Add Contour Lines to the Slice Planes” on page 6-33

“4. Define the Starting Points for the Stream Lines” on page 6-33

“5. Define the View” on page 6-33

Wind Mapping Data
The MATLAB® vector data set called wind represents air currents over North
America. This example uses a combination of techniques:

• Stream lines to trace the wind velocity

• Slice planes to show cross-sectional views of the data

• Contours on the slice planes to improve the visibility of slice-plane coloring

1. Determine the Range of the Coordinates
Load the data and determine minimum and maximum values to locate the
slice planes and contour plots (load, min, max).

load wind
xmin = min(x(:));
xmax = max(x(:));
ymax = max(y(:));
zmin = min(z(:));

2. Add Slice Planes for Visual Context
Calculate the magnitude of the vector field (which represents wind speed) to
generate scalar data for the slice command. Create slice planes along the
x-axis at xmin, 100, and xmax, along the y-axis at ymax, and along the z-axis at
zmin. Specify interpolated face coloring so the slice coloring indicates wind
speed, and do not draw edges (sqrt, slice, FaceColor, EdgeColor).

6-32

file:///B:/matlab/doc/src/toolbox/matlab/ref/surface_props.html%23FaceColor
file:///B:/matlab/doc/src/toolbox/matlab/ref/surface_props.html%23EdgeColor

Example — Stream Line Plots of Vector Data

wind_speed = sqrt(u.^2 + v.^2 + w.^2);
hsurfaces = slice(x,y,z,wind_speed,[xmin,100,xmax],ymax,zmin);
set(hsurfaces,'FaceColor','interp','EdgeColor','none')

3. Add Contour Lines to the Slice Planes
Draw light gray contour lines on the slice planes to help quantify the color
mapping (contourslice, EdgeColor, LineWidth).

hcont = ...
contourslice(x,y,z,wind_speed,[xmin,100,xmax],ymax,zmin);
set(hcont,'EdgeColor',[.7,.7,.7],'LineWidth',.5)

4. Define the Starting Points for the Stream Lines
In this example, all stream lines start at an x-axis value of 80 and span
the range 20 to 50 in the y direction and 0 to 15 in the z direction. Save
the handles of the stream lines and set the line width and color (meshgrid,
streamline, LineWidth, Color).

[sx,sy,sz] = meshgrid(80,20:10:50,0:5:15);
hlines = streamline(x,y,z,u,v,w,sx,sy,sz);
set(hlines,'LineWidth',2,'Color','r')

5. Define the View
Set up the view, expanding the z-axis to make it easier to read the graph
(view, daspect, axis).

view(3)
daspect([2,2,1])
axis tight

6-33

file:///B:/matlab/doc/src/toolbox/matlab/ref/patch_props.html%23EdgeColor
file:///B:/matlab/doc/src/toolbox/matlab/ref/patch_props.html%23LineWidth
file:///B:/matlab/doc/src/toolbox/matlab/ref/line_props.html%23LineWidth
file:///B:/matlab/doc/src/toolbox/matlab/ref/line_props.html%23Color

6 Volume Visualization Techniques

See coneplot for an example of the same data plotted with cones.

6-34

Example — Displaying Curl with Stream Ribbons

Example — Displaying Curl with Stream Ribbons

In this section...

“What Stream Ribbons Can Show” on page 6-35

“1. Select a Subset of Data to Plot” on page 6-35

“2. Calculate Curl Angular Velocity and Wind Speed” on page 6-35

“3. Create the Stream Ribbons” on page 6-36

“4. Define the View and Add Lighting” on page 6-36

What Stream Ribbons Can Show
Stream ribbons illustrate direction of flow, similar to stream lines, but can
also show rotation about the flow axis by twisting the ribbon-shaped flow line.
The streamribbon function enables you to specify a twist angle (in radians)
for each vertex in the stream ribbons.

When used in conjunction with the curl function, streamribbon is useful for
displaying the curl angular velocity of a vector field. The following example
illustrates this technique:

1. Select a Subset of Data to Plot
Load and select a region of interest in the wind data set using subvolume.
Plotting the full data set first can help you select a region of interest.

load wind
lims = [100.64 116.67 17.25 28.75 -0.02 6.86];
[x,y,z,u,v,w] = subvolume(x,y,z,u,v,w,lims);

2. Calculate Curl Angular Velocity and Wind Speed
Calculate the curl angular velocity and the wind speed.

cav = curl(x,y,z,u,v,w);
wind_speed = sqrt(u.^2 + v.^2 + w.^2);

6-35

6 Volume Visualization Techniques

3. Create the Stream Ribbons

• Use meshgrid to create arrays of starting points for the stream ribbons.
See “Starting Points for Stream Plots” in this chapter for information on
specifying the arrays of starting points.

• stream3 calculates the stream line vertices with a step size of .5.

• streamribbon scales the width of the ribbon by a factor of 2 to enhance the
visibility of the twisting (which indicates curl angular velocity).

• streamribbon returns the handles of the surface objects it creates, which
are then used to set the color to red (FaceColor), the color of the surface
edges to light gray (EdgeColor), and slightly increase the brightness of the
ambient light reflected when lighting is applied (AmbientStrength).

[sx sy sz] = meshgrid(110,20:5:30,1:5);
verts = stream3(x,y,z,u,v,w,sx,sy,sz,.5);
h = streamribbon(verts,x,y,z,cav,wind_speed,2);
set(h,'FaceColor','r',...
'EdgeColor',[.7 .7 .7],...
'AmbientStrength',.6)

4. Define the View and Add Lighting

• The volumebounds command provides a convenient way to set axis and
color limits.

• Add a grid and set the view for 3-D (streamribbon does not change the
current view).

• camlight creates a light positioned to the right of the viewpoint and
lighting sets the lighting method to Phong (which requires the Z-buffer
renderer).

axis(volumebounds(x,y,z,wind_speed))
grid on
view(3)
camlight right;
set(gcf,'Renderer','zbuffer'); lighting phong

6-36

file:///B:/matlab/doc/src/toolbox/matlab/ref/surface_props.html%23FaceColor
file:///B:/matlab/doc/src/toolbox/matlab/ref/surface_props.html%23EdgeColor
file:///B:/matlab/doc/src/toolbox/matlab/ref/surface_props.html%23AmbientStrength

Example — Displaying Curl with Stream Ribbons

6-37

6 Volume Visualization Techniques

Example — Displaying Divergence with Stream Tubes

In this section...

“What Stream Tubes Can Show” on page 6-38

“1. Load Data and Calculate Required Values” on page 6-38

“2. Draw the Slice Planes” on page 6-39

“3. Add Contour Lines to Slice Planes” on page 6-39

“4. Create the Stream Tubes” on page 6-39

“5. Define the View” on page 6-40

What Stream Tubes Can Show
Stream tubes are similar to stream lines, except the tubes have width,
providing another dimension that you can use to represent information.

By default, MATLAB® graphics display the divergence of the vector field
by the width of the tube. You can also define widths for each tube vertex
and thereby map other data to width.

This example uses the following techniques:

• Stream tubes to indicate flow direction and divergence of the vector field
in the wind data set

• Slice planes colored to indicate the speed of the wind currents overlaid
with contour line to enhance visibility

Inputs include the coordinates of the volume, vector field components, and
starting locations for the stream tubes.

1. Load Data and Calculate Required Values
The first step is to load the data and calculate values needed to make the
plots. These values include

• The location of the slice planes (maximum x, minimum y, and a value for
the altitude)

6-38

Example — Displaying Divergence with Stream Tubes

• The minimum x value for the start of the stream tubes

• The speed of the wind (magnitude of the vector field)

load wind
xmin = min(x(:));
xmax = max(x(:));
ymin = min(y(:));
alt = 7.356; % z-value for slice and streamtube plane
wind_speed = sqrt(u.^2 + v.^2 + w.^2);

2. Draw the Slice Planes
Draw the slice planes (slice) and set surface properties to create a smoothly
colored slice. Use 16 colors from the hsv colormap.

hslice = slice(x,y,z,wind_speed,xmax,ymin,alt);
set(hslice,'FaceColor','interp','EdgeColor','none')
colormap hsv(16)

3. Add Contour Lines to Slice Planes
Add contour lines (contourslice) to the slice planes. Adjust the contour
interval so the lines match the color boundaries in the slice planes:

• Call caxis to get the current color limits.

• Set the interpolation method used by contourslice to linear to match
the default used by slice.

color_lim = caxis;
cont_intervals = linspace(color_lim(1),color_lim(2),17);
hcont = contourslice(x,y,z,wind_speed,xmax,ymin,...
alt,cont_intervals,'linear');

set(hcont,'EdgeColor',[.4 .4 .4],'LineWidth',1)

4. Create the Stream Tubes
Use meshgrid to create arrays for the starting points for the stream tubes,
which begin at the minimum x value, range from 20 to 50 in y, and lie in a
single plane in z (corresponding to one of the slice planes).

6-39

6 Volume Visualization Techniques

The stream tubes (streamtube) are drawn at the specified locations and
scaled to be 1.25 times the default width to emphasize the variation in
divergence (width). The second element in the vector [1.25 30] specifies the
number of points along the circumference of the tube (the default is 20). You
might want to increase this value as the tube size increases, to maintain a
smooth-looking tube.

Set the data aspect ratio (daspect) before calling streamtube.

Stream tubes are surface objects, therefore you can control their appearance
by setting surface properties. This example sets surface properties to give a
brightly lit, red surface.

[sx,sy,sz] = meshgrid(xmin,20:3:50,alt);
daspect([1,1,1]) % set DAR before calling streamtube
htubes = streamtube(x,y,z,u,v,w,sx,sy,sz,[1.25 30]);
set(htubes,'EdgeColor','none','FaceColor','r',...
'AmbientStrength',.5)

5. Define the View
The final step is to define the view and add lighting (view, axis volumebounds,
Projection, camlight).

view(-100,30)
axis(volumebounds(x,y,z,wind_speed))
set(gca,'Projection','perspective')
camlight left

6-40

Example — Displaying Divergence with Stream Tubes

6-41

6 Volume Visualization Techniques

Example — Creating Stream Particle Animations

In this section...

“What Particle Animations Can Show” on page 6-42

“1. Specify the Starting Points of the Data Range to Plot” on page 6-42

“2. Create Stream Lines to Indicate the Particle Paths” on page 6-42

“3. Define the View” on page 6-43

“4. Calculate the Stream Particle Vertices” on page 6-43

What Particle Animations Can Show
A stream particle animation is useful for visualizing the flow direction and
speed of a vector field. The "particles" (represented by any of the line markers)
trace the flow along a particular stream line. The speed of each particle in the
animation is proportional to the magnitude of the vector field at any given
point along the stream line:

1. Specify the Starting Points of the Data Range to
Plot
This example determines the region of the volume to plot by specifying the
appropriate starting points. In this case, the stream plots begin at x = 100, y
spans 20 to 50 and in the z = 5 plane. Note that this is not the full volume
bounds.

load wind
[sx sy sz] = meshgrid(100,20:2:50,5);

2. Create Stream Lines to Indicate the Particle Paths
This example uses stream lines (stream3, streamline) to trace the path of
the animated particles. This adds a visual context for the animation. Another
possibility is to set the EraseMode property of the stream particle to none,
which would be useful for a single trace through the volume.

verts = stream3(x,y,z,u,v,w,sx,sy,sz);
sl = streamline(verts);

6-42

file:///B:/matlab/doc/src/toolbox/matlab/ref/line_props.html%23Marker

Example — Creating Stream Particle Animations

3. Define the View
While all the stream lines start in the z = 5 plane, the values of some spiral
down to lower values. The following settings provide a clear view of the
animation:

• The viewpoint (view) selected shows both the plane containing most stream
lines and the spiral.

• Selecting a data aspect ratio (daspect) of [2 2 0.125] provides greater
resolution in the z direction to make the stream particles more easily
visible in the spiral.

• Set the axes limits to match the data limits (axis) and draw the axis box
(box).

view(-10.5,18)
daspect([2 2 0.125])
axis tight; box on

4. Calculate the Stream Particle Vertices
The first step is to determine the vertices along the stream line where a
particle should be drawn. The interpstreamspeed function returns this
data based on the stream line vertices and the speed of the vector data. This
example scales the velocities by 0.05 to increase the number of interpolated
vertices.

Setting the axes DrawMode property to fast enables the animation to run
faster.

The streamparticles function sets the following properties:

• Animate to 10 to run the animation 10 times

• ParticleAlignment to on to start all particle traces together

• MarkerEdgeColor to none to draw only the face of the circular marker.
Animations usually run faster when marker edges are not drawn.

• MarkerFaceColor to red

• Marker to o, which draws a circular marker. You can use other line markers
as well.

6-43

file:///B:/matlab/doc/src/toolbox/matlab/ref/line_props.html%23Marker

6 Volume Visualization Techniques

iverts = interpstreamspeed(x,y,z,u,v,w,verts,0.05);
set(gca,'drawmode','fast');
streamparticles(iverts,15,...
'Animate',10,...
'ParticleAlignment','on',...
'MarkerEdgeColor','none',...
'MarkerFaceColor','red',...
'Marker','o');

6-44

Example — Vector Field Displayed with Cone Plots

Example — Vector Field Displayed with Cone Plots

In this section...

“What Cone Plots Can Show” on page 6-45

“1. Create an Isosurface” on page 6-45

“2. Add Isocaps to the Isosurface” on page 6-46

“3. Create First Set of Cones” on page 6-46

“4. Create Second Set of Cones” on page 6-47

“5. Define the View” on page 6-47

“6. Add Lighting” on page 6-47

What Cone Plots Can Show
This example plots the velocity vector cones for the wind data. The graph
produced employs a number of visualization techniques:

• An isosurface is used to provide visual context for the cone plots and to
provide means to select a specific data value for a set of cones.

• Lighting enables the shape of the isosurface to be clearly visible.

• The use of perspective projection, camera positioning, and view angle
adjustments composes the final view.

1. Create an Isosurface
Displaying an isosurface within the rectangular space of the data provides a
visual context for the cone plot. Creating the isosurface requires a number
of steps:

• Calculate the magnitude of the vector field, which represents the speed
of the wind.

• Use isosurface and patch to draw an isosurface illustrating where
in the rectangular space the wind speed is equal to a particular value.
Regions inside the isosurface have higher wind speeds, regions outside the
isosurface have lower wind speeds.

6-45

6 Volume Visualization Techniques

• Use isonormals to compute vertex normals of the isosurface from the
volume data rather than calculate the normals from the triangles used to
render the isosurface. These normals generally produce more accurate
results.

• Set visual properties of the isosurface, making it red and without drawing
edges (FaceColor, EdgeColor).

load wind
wind_speed = sqrt(u.^2 + v.^2 + w.^2);
hiso = patch(isosurface(x,y,z,wind_speed,40));
isonormals(x,y,z,wind_speed,hiso)
set(hiso,'FaceColor','red','EdgeColor','none');

2. Add Isocaps to the Isosurface
Isocaps are similar to slice planes in that they show a cross section of
the volume. They are designed to be the end caps of isosurfaces. Using
interpolated face color on an isocap causes a mapping of data value to color in
the current colormap. To create isocaps for the isosurface, define them at the
same isovalue (isocaps, patch, colormap).

hcap = patch(isocaps(x,y,z,wind_speed,40),...
'FaceColor','interp',...
'EdgeColor','none');

colormap hsv

3. Create First Set of Cones

• Use daspect to set the data aspect ratio of the axes before calling coneplot
so function can determine the proper size of the cones.

• Determine the points at which to place cones by calculating another
isosurface that has a smaller isovalue (so the cones are displayed outside
the first isosurface) and use reducepatch to reduce the number of faces
and vertices (so there are not too many cones on the graph).

• Draw the cones and set the face color to blue and the edge color to none.

daspect([1,1,1]);
[f verts] = reducepatch(isosurface(x,y,z,wind_speed,30),0.07);
h1 = coneplot(x,y,z,u,v,w,verts(:,1),verts(:,2),verts(:,3),3);

6-46

file:///B:/matlab/doc/src/toolbox/matlab/ref/patch_props.html%23FaceColor
file:///B:/matlab/doc/src/toolbox/matlab/ref/patch_props.html%23EdgeColor

Example — Vector Field Displayed with Cone Plots

set(h1,'FaceColor','blue','EdgeColor','none');

4. Create Second Set of Cones

• Create a second set of points at values that span the data range (linspace,
meshgrid).

• Draw a second set of cones and set the face color to green and the edge
color to none.

xrange = linspace(min(x(:)),max(x(:)),10);
yrange = linspace(min(y(:)),max(y(:)),10);
zrange = 3:4:15;
[cx,cy,cz] = meshgrid(xrange,yrange,zrange);
h2 = coneplot(x,y,z,u,v,w,cx,cy,cz,2);
set(h2,'FaceColor','green','EdgeColor','none');

5. Define the View

• Use the axis command to set the axis limits equal to the minimum and
maximum values of the data and enclose the graph in a box to improve
the sense of a volume (box).

• Set the projection type to perspective to create a more natural view of the
volume. Set the viewpoint and zoom in to make the scene larger (camproj,
camzoom, view).

axis tight
box on
camproj perspective
camzoom(1.25)
view(65,45)

6. Add Lighting
Add a light source and use Phong lighting for the smoothest lighting of the
isosurface (Phong lighting requires the Z-buffer renderer). Increase the
strength of the background lighting on the isocaps to make them brighter
(camlight, lighting, AmbientStrength).

camlight(-45,45)

6-47

file:///B:/matlab/doc/src/toolbox/matlab/ref/patch_props.html%23AmbientStrength

6 Volume Visualization Techniques

set(gcf,'Renderer','zbuffer');
lighting phong
set(hcap,'AmbientStrength',.6)

6-48

Index

IndexA
alpha data

decription 4-8
alpha values 4-3
ambient light 3-11
AmbientLightColor property 3-3

illustration 3-11
AmbientStrength property 3-4

illustration 3-11
aspect ratio 2-42 2-58

for realistic objects 2-57
for surface displays 2-55
properties that affect 2-47
specifying 2-52

axes
aspect ratio 2-42 2-47

3-D 2-42
properties that affect 2-47
specifying 2-52

camera properties 2-30
controlling the shape of 2-52
default aspect ratio 2-48
limits 2-42

example 2-54
plot box 2-9
position rectangle 2-31
scaling 2-42
stretch-to-fill 2-42

axis 2-42
auto 2-43
equal 2-43
ij 2-43
illustrated examples, 3-D 2-44
image 2-44
manual 2-43
normal 2-44
square 2-43
tight 2-43
vis3d 2-43
xy 2-43

azimuth of viewpoint 2-5
default 2-D 2-6
default 3-D 2-6
limitations 2-8

B
BackFaceLighting property 3-4

illustration 3-13
brighten 1-23

C
camdolly 2-21
camera position, moving 2-32
camera properties 2-30

illustration showing 2-9
camera toolbar 2-10
CameraPosition property 2-30

and perspective 2-32
fly-by 2-32

CameraPositionMode property 2-30
CameraTarget property 2-30
CameraTargetMode property 2-30
CameraUpVector property 2-30 2-34

example 2-36
CameraUpVectorMode property 2-30
CameraViewAngle property 2-31

and perspective 2-34
zooming with 2-33

CameraViewAngleMode property 2-31 2-34
camlookat 2-21
camorbit 2-21
campan 2-21
campos 2-21
camproj 2-21
camroll 2-21
camtarget 2-21
camup 2-21
camva 2-21

Index-1

Index

camzoom 2-21
CData property

patches 5-14
CDataMapping property 1-20

patches 5-14
colorbar 1-19
colormap 1-17
colormaps

altering 1-23
brightening 1-23
brightness component of TV signal 1-24
displaying 1-19
for surfaces 1-17
functions that create 1-18
range of RGB values in 1-17

colors
colormaps 1-17
indexed 1-16 to 1-17

direct 1-19
scaled 1-19

interpreted by surfaces 1-17
NTSC encoding of 1-24
of patches 5-14
of surface plots 1-16
scaling algorithm 1-20
specifying for surface plot, example 1-20
truecolor 1-16

specifying 1-24
typical RGB values 1-17

cone plots 6-45
coordinate system and viewpoint 2-5

D
DataAspectRatio property 2-47

example 2-52
DataAspectRatioMode property 2-47
default

aspect ratio 2-48

azimuth
2-D 2-6
3-D 2-6

CameraPosition 2-31
CameraTarget 2-31
CameraUpVector 2-31
CameraViewAngle 2-31
elevation

2-D 2-6
3-D 2-6

Projection 2-31
view 2-31

del2 1-21
diffuse reflection 3-10
DiffuseStrength property 3-4

illustration 3-10
direct color mapping 1-20
direction cosines 2-35

E
edge effects and lighting 3-14
EdgeColor property 3-4
EdgeLighting property 3-4
edges of patches 5-17
elevation of viewpoint 2-5

default 2-D 2-6
default 3-D 2-6
limitations 2-8

examples
3-D graph 1-2
axis 2-44
changing CameraPosition 2-32
DataAspectRatio property 2-52
del2 1-21
direction cosines 2-35
displaying real objects 2-55 2-57
linspace 1-11
meshgrid 1-5 1-11
of lighting 3-5

Index-2

Index

parametric surfaces 1-13
plot3 1-4
PlotBoxAspectRatio property 2-53
specifying truecolor

surfaces 1-24
stretch-to-fill 2-52
texture mapping 1-27
unevenly sampled data 1-10
view 2-34

F
FaceColor property 3-4
FaceLighting property 3-4
Faces property 5-8
FaceVertexCData property 5-10 5-14
fly-by effect 2-32

G
Gouraud lighting algorithm 3-8
graphs

steps to create 3-D 1-2
griddata 1-11

H
Hadamard matrix 1-13
hidden 1-14
hidden line removal 1-14

I
indexed color

surfaces 1-16
Infs, avoiding in data 1-9
interpolated colors

patches 5-9
indexed vs. truecolor 5-22

isosurface
illustrating flow data 6-19

L
Laplacian of a matrix 1-21
light 3-2
lighting 3-2 3-17

algorithms
flat 3-8
Gouraud 3-8
Phong 3-8

ambient light 3-11
backface 3-13
diffuse reflection 3-10
important properties 3-2
properties that affect 3-3
reflectance characteristics 3-10 3-13
specular

color 3-13
exponent 3-12
reflection 3-10

lighting command 3-9
lines

removing hidden 1-14
linspace 1-11

M
material command 3-10
mathematical functions

visualizing with surface plot 1-8
matrix

Hadamard 1-13
representing as

surface 1-7
mesh 1-8
meshgrid 1-8
MRI data, visualizing 6-7

N
nonuniform data, plotting 1-10
NormalMode property 3-5

Index-3

Index

NTSC color encoding 1-24

O
orthographic projection 2-37

and Z-buffer 2-39

P
parametric surfaces 1-12
patch

behavior of function 5-3
interpreting color 5-4

patches
coloring 5-14

edges 5-15
face coloring

flat 5-9
interpolated 5-9

indexed color 5-18
direct 5-20
scaled 5-18

interpreting color data 5-18
multifaceted 5-7
single polygons 5-4
specifying faces and vertices 5-8
truecolor 5-21
ways to specify 5-2

perspective projection 2-37
and Z-buffer 2-40

Phong lighting algorithm 3-8
plot box 2-9
plot3 1-4
PlotBoxAspectRatio property 2-47

example 2-53
PlotBoxAspectRatioMode property 2-47
plotting

3-D
matrices 1-5
vectors 1-4

nonuniform data 1-10
surfaces 1-8

polygons, creating with patch 5-2
position rectangle 2-9
printing

3-D scenes 2-41
projecting surfaces onto an axis 2-55
Projection property 2-31
projection types 2-37 2-41

camera position 2-39
orthographic 2-37
perspective 2-37
rendering method 2-39

R
realism, adding with lighting 3-2
realistic display of objects 2-57
reflection, specular and diffuse 3-10
Renderer property 1-26
RendererMode property 1-26
RGB

color values 1-17
rgbplot 1-23
rotation

about viewing axis 2-34
without resizing 2-34

S
scaled color mapping 1-20
slice planes

colormapping 6-17
slicing a volume 6-14

specular
color 3-13
exponent 3-12
highlight 3-12
reflection 3-10

SpecularColorReflectance property 3-4

Index-4

Index

illustration 3-13
SpecularExponent property 3-4

illustration 3-12
SpecularStrength property 3-4

illustration 3-10
sphere 1-27
starting points for stream plots 6-27
stream line plots 6-32
stream plots

starting points 6-27
stretch-to-fill 2-42

overriding 2-51
surf 1-8
surfaces

CData 1-27
coloring 1-16
curvature mapped to color 1-21
FaceColor 1-27
parametric 1-12
plotting 1-8

nonuniformly sampled data 1-10
texturemap 1-27

T
texture mapping 1-26
three-dimensional objects, creating with

patch 5-2
toolbar, camera 2-10
truecolor

patches 5-21
rendering method used for 1-26
surface plots 1-24

V
vectors

determined by direction cosines 2-35
vertex normals and back face lighting 3-14
VertexNormals property 3-5

Vertices property 5-8
view 2-5

azimuth of viewpoint 2-5
camera properties 2-30
coordinate system defining 2-5
definition of 2-3
elevation of viewpoint 2-5
example of rotation 2-34
limitation of azimuth and elevation 2-8
limitations using 2-8
MATLAB default behavior 2-31
projection types 2-37
specifying 2-30
specifying with azimuth and elevation 2-5

viewing axis 2-9
moving camera along 2-32

viewpoint, controlling 2-5 to 2-6 2-8
visualizing

mathematical functions 1-8
steps for volume data 6-4
techniques for volume data 6-4

volume data
accessing subregions 6-30
examples of 6-3
MRI 6-7
scalar 6-7
slicing with plane 6-14
steps to visualize 6-4
techniques for visualizing 6-4
vector 6-26
visualizing 6-3

W
wire frame surface 1-7 1-14

Z
Z-buffer

orthographic projection 2-39

Index-5

Index

perspective projection 2-40
rendering truecolor 1-26

zooming by setting camera angle 2-33

Index-6

	toc
	Creating 3-D Graphs
	A Typical 3-D Graph
	Line Plots of 3-D Data
	Basic 3-D Plotting: The plot3 function
	Plotting Matrix Data

	Representing a Matrix as a Surface
	Functions for Plotting Data Grids
	Mesh and Surface Plots
	Visualizing Functions of Two Variables
	Emphasizing Surface Shape

	Surface Plots of Nonuniformly Sampled Data
	Example — Displaying Nonuniform Data on a Surface

	Parametric Surfaces
	Hidden Line Removal

	Coloring Mesh and Surface Plots
	Coloring Techniques
	Types of Color Data
	Colormaps
	RGB Color Components
	Displaying Colormaps

	Indexed Color Surfaces — Direct and Scaled Color Mapping
	Direct Mapping
	Scaled Mapping
	Specifying Indexed Colors

	Example — Mapping Surface Curvature to Color
	Altering Colormaps
	NTSC Color Encoding

	Truecolor Surfaces
	Rendering Methods for Truecolor

	Texture Mapping
	Example — Texture Mapping a Surface

	Defining the View
	Viewing Overview
	Viewing 3-D Graphs and Scenes
	Positioning the Viewpoint
	Setting the Aspect Ratio
	Default Views

	Setting the Viewpoint with Azimuth and Elevation
	Azimuth and Elevation
	Default 2-D and 3-D Views
	Examples of Views Specified with Azimuth and Elevation
	Limitations of Azimuth and Elevation

	Defining Scenes with Camera Graphics
	View Control with the Camera Toolbar
	Camera Toolbar
	Principal Axes
	Optimizing for 3-D Camera Motion

	Camera Motion Controls
	Orbit Camera
	Graphics Properties

	Orbit Scene Light
	Graphics Properties

	Pan/Tilt Camera
	Graphics Properties

	Move Camera Horizontally/Vertically
	Graphics Properties

	Move Camera Forward and Backward
	Graphics Properties

	Zoom Camera
	Graphics Properties

	Camera Roll
	Graphics Properties

	Camera Graphics Functions
	Example — Dollying the Camera
	Summary of Techniques
	Implementation

	Example — Moving the Camera Through a Scene
	Summary of Techniques
	Graphing the Volume Data
	Setting Up the View
	Specifying the Light Source
	Selecting a Renderer
	Defining the Camera Path as a Stream Line
	Implementing the Fly-Through

	Low-Level Camera Properties
	Camera Properties You Can Set
	Default Viewpoint Selection
	Moving In and Out on the Scene
	Moving Through a Scene
	Example — Moving Toward or Away from the Target

	Making the Scene Larger or Smaller
	Revolving Around the Scene
	Rotation Without Resizing of Graphics Objects
	Rotation About the Viewing Axis
	Example — Calculating a Camera Up Vector

	Understanding View Projections
	The Two Types of Projections
	Projection Types and Camera Location
	Printing 3-D Scenes
	Additional Information

	Understanding Axes Aspect Ratio
	Stretch-to-Fill
	Specifying Axis Scaling
	Specifying Aspect Ratio
	Example — axis Command Options
	Additional Commands for Setting Aspect Ratio

	Manipulating Axes Aspect Ratio
	Axes Aspect Ratio Properties
	Default Aspect Ratio Selection
	Example — MATLAB Defaults

	Overriding Stretch-to-Fill
	Effects of Setting Aspect Ratio Properties
	Data Aspect Ratio
	Plot Box Aspect Ratio
	Adjusting Axis Limits

	Example — Displaying Cross-Sections of Surfaces
	Example — Displaying Real Objects

	Lighting as a Visualization Tool
	Lighting Overview
	Lighting Commands
	Light Objects
	Properties That Affect Lighting
	Examples of Lighting Control
	Example — Adding Lights to a Scene
	Example — Illuminating Mathematical Functions

	Selecting a Lighting Method
	Face and Edge Lighting Methods

	Reflectance Characteristics of Graphics Objects
	Specular and Diffuse Reflection
	Ambient Light
	Specular Exponent
	Specular Color Reflectance
	Back Face Lighting
	Positioning Lights in Data Space

	Transparency
	Making Objects Transparent
	About Transparency
	Specifying Transparency
	Transparency Properties
	Transparency Functions

	Example — A Transparent Isosurface
	Setting a Single Transparency Value for Images

	Mapping Data to Transparency — Alpha Data
	What Is Alpha Data?
	Size of the Alpha Data Array
	Mapping Alpha Data to the Alphamap
	Example — Mapping Data to Color or Transparency

	Selecting an Alphamap
	What Is an Alphamap?
	Example — Modifying the Alphamap

	Creating 3-D Models with Patches
	Introduction to Patch Objects
	What Are Patch Objects?
	Behavior of the patch Function
	High-Level Syntax
	Low-Level Syntax
	Interpreting the Color Argument

	Creating a Single Polygon
	Interpolated Face Colors

	Multifaceted Patches
	Example — Defining a Cube
	Specifying X, Y, and Z Coordinates
	Specifying Faces and Vertices
	Flat Face Color
	Interpolated Face Color

	Modifying Data on Existing Patch Objects
	Specifying Patch Data
	Handling Mixed Data Specification

	Specifying Patch Coloring
	Patch Color Properties
	Patch Edge Coloring
	Example — Specifying Flat Edge and Face Coloring

	Coloring Edges with Shared Vertices

	Interpreting Indexed and Truecolor Data
	Introduction
	Indexed Color Data
	Scaled Color
	Direct Color

	Truecolor Patches
	Interpolating in Indexed Color Versus Truecolor

	Volume Visualization Techniques
	Overview of Volume Visualization
	Examples of Volume Data
	Selecting Visualization Techniques
	Steps to Create a Volume Visualization
	Volume Visualization Functions
	Functions for Scalar Data
	Functions for Vector Data

	Techniques for Visualizing Scalar Volume Data
	What Is Scalar Volume Data?
	Example — Ways to Display MRI Data
	Changing the Data Format
	Displaying Images of MRI Data
	Displaying a 2-D Contour Slice
	Displaying 3-D Contour Slices
	Displaying an Isosurface
	Adding an Isocap to Show a Cutaway Surface
	Defining the View
	Add Lighting

	Exploring Volumes with Slice Planes
	Example — Slicing Fluid Flow Data
	1. Investigate the Data
	2. Create a Slice Plane at an Angle to the X-Axes
	3. Draw the Slice Planes
	4. Define the View
	5. Add Lighting and Specify Colors

	Modifying the Color Mapping
	Customizing the Colormap
	Adjusting the Color Limits

	Connecting Equal Values with Isosurfaces
	Example — Isosurfaces in Fluid Flow Data

	Isocaps Add Context to Visualizations
	What Are Isocaps?
	Other Isocap Applications
	Defining Isocaps
	Example — Adding Isocaps to an Isosurface
	1. Prepare the Data
	2. Create the Isosurface and Set Properties
	3. Create the Isocaps and Set Properties
	4. Define the View
	5. Add Lighting

	Visualizing Vector Volume Data
	Lines, Particles, Ribbons, Streams, Tubes, and Cones
	Using Scalar Techniques with Vector Data
	Specifying Starting Points for Stream Plots
	Determining the Starting Points
	Specifying Arrays of Starting-Point Coordinates

	Accessing Subregions of Volume Data
	Indexing with the Colon Operator
	Using the subvolume Function

	Example — Stream Line Plots of Vector Data
	Wind Mapping Data
	1. Determine the Range of the Coordinates
	2. Add Slice Planes for Visual Context
	3. Add Contour Lines to the Slice Planes
	4. Define the Starting Points for the Stream Lines
	5. Define the View

	Example — Displaying Curl with Stream Ribbons
	What Stream Ribbons Can Show
	1. Select a Subset of Data to Plot
	2. Calculate Curl Angular Velocity and Wind Speed
	3. Create the Stream Ribbons
	4. Define the View and Add Lighting

	Example — Displaying Divergence with Stream Tubes
	What Stream Tubes Can Show
	1. Load Data and Calculate Required Values
	2. Draw the Slice Planes
	3. Add Contour Lines to Slice Planes
	4. Create the Stream Tubes
	5. Define the View

	Example — Creating Stream Particle Animations
	What Particle Animations Can Show
	1. Specify the Starting Points of the Data Range to Plot
	2. Create Stream Lines to Indicate the Particle Paths
	3. Define the View
	4. Calculate the Stream Particle Vertices

	Example — Vector Field Displayed with Cone Plots
	What Cone Plots Can Show
	1. Create an Isosurface
	2. Add Isocaps to the Isosurface
	3. Create First Set of Cones
	4. Create Second Set of Cones
	5. Define the View
	6. Add Lighting

	Index

